
-

HÜ«
CO

m ■
00

§ THE UNIVERSITY OF MICHIGAN

Technical Report 15

CONCOMP
December 1968

AN EXECUTIVE SYSTEM FOR A DEC 339

COMPUTER DISPLAY TERMINAL

JamM H. Jockten

' f i o n

Tfal« dhcunmmt ham hema qfgaoved
for publla ttimcam mad aaie: iU

Ci
APRl 71969 I

DTaP

,*
^

THE UNIVERSITY OF MICHIGAN

Technical Report 15

AN EXECUTIVE SYSTEM

FOR A DEC 339 COMPUTER DISPLAY TERMINAL

J .mes H. Jackson

CONCOMP: Research in Conversational Use of Computers
F. H. Westervelt, Project Director
ORA Project 07449

Supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE

WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-305 0

ARPA ORDER NO. 716

Administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

December 1968

ABSTRACT

This report describes a real-time multiprogramming

software system for a DEC 339 computer display terminal, which

may communicate with an external computer through a serial-

synchronous data set. The system is designed to support both

programs which require the attention of an external computer

while they are being executed and programs which are independent

of external computation service. For either type of program,

the entire graphics support is provided by the 339 system, but

the interpretation of the relations implied by the graphics

may be performed either in the 339 or in an external computer.

Multiprogramming facility is provided to facilitate effective

use of I/O devices in order to cope with the demands of a real-

time environment.

iii

TABLE OF CONTENTS

Page

ABSTRACT Üi

1. INTRODUCTION 1

2. SYSTEM ORGANIZATION 3

2.1 Bootstrap Arrangement 3
2.2 Tasks 4
2. 3 States of the System 4
2. 4 Entering System State 5

3. SYSTEM SUBROUTINES 7

3.1 Word Queues 8
3.2 Task Scheduling and I/O Device Allocation...., 11
3. 3 Format Conversions 16
3 . 4 Buffered I/O 17

3.4.1 Dataphone I/O 18
3.4.2 Paper Tape I/O 22
3.4.3 Teletype I/O 25

3.5 Nonbuffered I/O 26
3. 6 Push-Button Processing 29
3.7 Display Control Communication 31
3. 8 Light Pen Tracking 32
3. 9 Display Structure Topology 3 5
3.10 Level Modification 40
3.11 Text List Manipulation 61

4. IDLE-TIME TASK 64

4 .1 Copy Functions 64
4. 2 Scheduling of User Tasks 67
4.3 Clearing the Task Queue or Display Storage 67
4.4 Teletype to Dataphone Transmission 68
4 . 5 Entering User State 68

5. SYSTEM CAPABILITY 69

BIBLIOGRAPHY 70

APPENDICES

A LISTING OF THE EXECUTIVE SYSTEM A-l

B SUMMARY OF SYSTEM SUBROUTINES B-l

C SUMMARY OF IOT INSTRUCTIONS C-1

D ASSEMBLY LANGUAGE D-1

v

Imtf^fm"'"«'" """"'••'

1

BLANK PAGE

-

1. INTRODUCTION

The objective of this report is to describe the con-

ceptual organization of the SEL (Systems Engineering Laboratory's)

Executive System for a 339 computer display terminal, as well

as to provide a manual for its use. More specifically, the hard-

ware configuration for which the System was designed consists of

the following items (plus necessary interfaces, multiplexors,

etc.):

DEC PDP-9 with at least two 8192-word

memory banks

DEC KE09A extended arithmetic element

DEC 338 display control (less PDP-8)

DEC AF01B A/D converter

DEC AA01A D/A converter

AT&T 201A data set

The System provides both a multiprogramming capability (based

on I/O slicing, rather than time-slicing) and a complete set

of operators for maintaining a highly structured display file

and for interrogating it for relational properties.

Since an on-line operator tends to produce a burst of

inputs and then to be idle for a relatively long period of time,

appropriate feedback to each input must be provided rapidly if

the operator is to be allowed to proceed at his own rate. If

the terminal were not multiprogrammed, the processing of one

input would have to be completed before processing of the next

could be begun. Consequently, bursts of operator activity

could not be effectively handled by this scheme. However, if

a multiprogramming system (where the users of the system are

programs which respond to various inputs) were used, feedback

to each input could be produced almost immediately, and the

remaining (and usually time-consuming) part of the processing

could be deferred until a later time.

-1-

i

-2-

Bandwidth limitations on the data link between the

remote computer and the central timesharing system suggest that

programs be distributed between the central computer and the

remote computer such that dataphone traffic is minimized (sub-

ject to the constraint of the capacity of the remote machine).

In terms of a remote display terminal, this usually means that

the relations implied by a display file, rather than the display

file itself, be transmitted. For this reason, the remote system

should provide a facility for constructing a displa,T file based

partly on relational information, and for irtarrogatxng a dis-

play file for relational information.

A general discussion of the organization of the System

and detailed discussions of the various system subroutines and

the idle-time task follow. A complete listing of the System is

given in Appendix A, a summary of system subroutines is given

in Appendix B, a summary of all IOT instructions pertinent to

the hardware configuration is given in Appendix C, and a brief

description of the assembly language used in the examples is

given in Appendix D.

2. SYSTEM ORGANIZATION

2.1 Bootstrap Arrangement

The System should be loaded by the following procedure

1) Place the system tape in the reader.

2) Set all switches to 0 (down).

3) Depress the read-in key.

This procedure causes the first record, which is written in

hardware RIM format, to be read, and the computer to be started

at the last location loaded. The record read is the bootstrap

loader represented by the following assembly code:

SELECT READER IN BINARY MODE

SKIP ON READER FLAG

WAIT FOR READER FLAG

READ READER BUFFER

LOAD A WORD

READ NEXT WORD

$ORG 0

IOT 144

IOT 101

JMP *-l

IOT 112

DAC* 10

JMP 0

HLT

HLT

$DC 17731

JMP 0

INITIAL INDEX VALUE

START BOOTSTRAP LOADER

The bootstrap loader is capable of loading one binary

block (Section 3.4.2) starting at location 17732-, but is not

capable of detecting the end of the block. However, the block

which immediately follows the bootstrap loader on the system

tape is loaded into locations 17732-,... ,17777g, 0. The word

loaded into location 0 is a JMP instruction to the beginning of

a more sophisticated loader, which is contained in the block

read by the bootstrap loader.

The loader loaded by the bootstrap loader is capable

of loading an arbitrary number of binary blocks, and it is this

-3-

-4-

loader which loads the System. Immediately following the last

block of the System is a one-word block which modifies the

loader and causes execution of the System to begin.

At the end of the loading process, the System occupies

locations 0-117778/ and the bootstrap loader and system loader

are no longer usable. (The storage occupied by the system loader

is salvaged by the System for display structure use at a later

time.)

2.2 Tasks

Each program written to run with the System is called

a "task" and is identified by its entry point. The System

maintains a task queue, each entry of which consists of the

entry point for the task, together with other information re-

quired to determine the eligibility of the task or to restore

the contents of certain registers before the task is executed.

Whenever execution of a task is begun, the task is removed from

the task queue.

A task is entered by a JMP instruction (rather than

a JMS instruction, as in some other similar systems) and is

subject to the following restrictions:

1) No user task may contain an IOT instruction.

2) No user task may store in core bank 0. (No user

task should be loaded into core bank 0. Locations 12000o-17777o 8 8
are used by the System to store the display structure.)

3) A task which uses an allocatable I/O device

(via system subroutines) must allocate the device before calling

the system subroutine to use it, and must release the device

before terminating. (The task may allocate and/or release the

device implicitly by insuring that another task is scheduled to

perform the function.)

2.3 States of the System

At any instant, the System is operating in one of

two states:

"' '

-5-

1) System state—A special system task, called the

idl^-time task (Section 4) , is executed. However, an incoming

message from the 201A dataphone which is not directed to a user

task will cause the 201-to-teleprinter task (Section 3.4.1) to

be scheduled.

2) User state—All scheduled user tasks are exe-

cuted and the idle-time task is not executed. The 201-to-tele-

printer task is scheduled when necessary as in system state.

The states of the System may be depicted by the follow-

ing diagram:

201-to-teleprinter task

Idle-time
task

User tasks

Set of tasks which may
be executed in system
state

Set of tasks which may
be executed in user
state

2.4 Entering System State

Whenever one of the following events occurs, the System

is reinitialized (i.e., all I/O activity is stopped, the task

queue and all buffers are cleared, and all I/O devices are

-6-

released), and system state is entered:

1) The System is reloaded.

2) The currently executing user task terminates

with the ■' „k queue empty, and all output buffers become empty.

3) An unidentifiable interrupt occurs.

4) The manual interrupt button is pressed. (The

manual interrupt is used by the operator to reinitialize the

System in case of emergency.)

5) The task queue overflows.

6) The program is started at location 22g via the

panel switches.

7) An illegal instruction (operation code 00g) is

executed.

Immediately after system state is entered, a comment describing

which one of the above events occurred is typed on the teletype,

and, if enough free display storage remains, it is displayed

on the screen. Reinitializing the System does not include clear-

ing the display storage area, but it does cause the active

structure to be detached from the highest active level (Section

3.9) .

3. SYSTEM SUBROUTINES

Sections 3.1 through 3.11 describe the various system

subroutines which are callable from user tasks. The entry point

to each subroutine occupies a fixed position in a vector such

that the actual code for the subroutine may be relocated (by

some future modification of the System) without requiring user

tasks to be reassembled. Since the System occupies core bank

0 and user tasks cannot be loaded into bank 0, system subroutines

must be called via an indirect reference, i.e., if a is the

symbolic name of a system subroutine, a call to a is written

in the following form:

JMS* -o

Most of the system subroutines return immediately after

the JMS instructions which call them. (Parameters are passed

in the AC and MQ.) However, several subroutines have "failure

returns," i.e., a return is made immediately after the location

containing the JMS Instruction if the function which the subrou-

tine must perform cannot be performed. If the subroutine succeeds,

return is made to the next location. The two types of calling

sequences may be illustrated as follows:

Subroutine with no failure return:

JMS* -a
 (return)

Subroutine with failure return:

JMS* -O
 (failure return)

 (success return)

A subroutine which has a failure return is denoted by an aster-

isk (*) appended to its symbolic name in Sections 3.1 through

3.11. (Tue asterisk is not part of the symbolic name.)

-8-

3.1 Word Queues

The basic structure which supports cyclic I/O buffer-

ing and task scheduling in the System is a word queue. This

structure consists of a block of three words, called control

words, followed by n data words and has the properties of

both a first-in first-out (FIFO) queue and a last-in first-out

(LIFO) queue.

A word queue is represented in core as shown by the

following diagram:

3 control words

n data words

V

■Ji

The symbols in the diagram are interpreted as follows:

q ■ Address of the word queue. By convention, this
is the address of the first control word.

q, ■ Pointer to the physically last data word in the
queue.

q- ■ Pointer to the last word put into the queue
(FIFO sense).

q- ■ Pointer to the last word taken out of the queue.

-9-

The word queue is empty whenever q^ * «Jo , and it is

full whenever q, = q2 + 1 or q- = q + 3 and ^o = ^1 * The

maximum number of words which may be stored in the queue is then

n - 1 .

The cyclic nature of the word queue requires that the

terms incrementing and decrementing a pointer be defined

for this structure. A pointer q is "incremented" if it is

modified so that it takes on the value

q' =

q + 1, if q j' q-

q + 3, if q = q.

A pointer q is "decremented" if it is modified so that it

takes on the value

q-1, if q^qo+3

q" =
q^ if q = qo + 3

The following system subroutines have been defined

for managing word queues:

Q.C - The word queue whose aadress is given in bits

3-17 of the AC is cleared, (q- and q3 are both

set equal to q-i •)

Q.I*- The word given in the MQ is added in LIFO fashion

to the word queue whose address is gi^'en in bits

3-17 of the AC. (The word to be queued is stored

in the location which q^ references, and q,

is decremented.) A failure return is made if

the queue is full before the operation is at-

tempted .

Q.A*- The word given in the MQ is added in FIFO fashion

to the word queue whose address is given in bits

3-17 of the AC. (q~ is incremented and the word

to bo queued is stored in ^he location which the

resulting q» references.) A failure return is

-10-

made if the queue is full before the operation

is attempted.

Q.F*- A word is fetched from the word queue whose

address is given in bits 3-17 of the AC and is

returned in the AC. (q3 is incremented, and

the word stored in the location which the result-

ing q3 references is fetched.) A failure re-

turn is made if the word queue is empty before

the operation is attempted.

A word queue may be constructed by defining only the

cleared (via Q.C

and q- will be automati-

pointers q and q. , since, if the queue is cleared (via Q.C)

before it is used, the pointers q- and q3
cally established. For example, the word queue whose address

is Q may be constructed by the following two statements, where

e is an expression whose value is n + 2:

Q $DC *+e

$DS e

As an example of the manipulation (but not application)

of word queues, consider a task, whose entry point is TASK, which

stores sequential integers on a first-in, first-out basis in

the word queue FIFO until the queue is full, and then copies

words from FIFO into another word queue LIFO on a last-in, first-

out basis. Both FIFO and LIFO will be assumed to have a capacity

of X words, where X is a predefined symbol. An algorithm for

this task is given below. (T.F is described in Section 3.2.)

TASK

LOOP1

LAC =FIFO

JMS* -Q.C

LAC =LIFO

JMS* =Q.C

DZM COUNT

LAC COUNT

LMQ

LAC =FIFO

GET ADDRESS OF FIFO QUEUE

CLEAR FIFO QUEUE

GET ADDRESS OF LIFO QUEUE

CLEAR LIFO QUEUE

START COUNTING AT ZERO

GET VALUE OF INTEGER

SET UP PARAMETER

GET ADDRESS OF FIFO QUEUE

-11-

L00P2

FIFO

LIFO

JMS* =Q.A

JMP LOOP 2

ISZ COUNT

JMP LOOP1

LAC «FIFO

JMS* =Q.F

JMS* =T.F

LMQ

LAC =LIFO

JMS* -Q.I

$DC 0

JMP LOOP2

$DC *+X+3

$DS X+3

$DC *+X+3

$DS X+3

ADD INTEGER TO QUEUE

COPY INTO OTHER QUEUE

INCREMENT COUNTER

QUEUE NEXT INTEGER

GET ADDRESS OF FIFO QUEUE

FETCH WORD FROM QUEUE

TERMINATE TASK

SET UP PARAMETER

GET ADDRESS OF LIFO QUEUE

INSERT WORD ON QUEUE

PROGRAM SHOULD NEVER GET HERE

COPY NEXT WORD

3.2 Task Scheduling and I/O Device Allocation

The following system subroutines have been defined for

controlling task scheduling:

T.S - The task whose address appears in bits 3-17 in

the AC is scheduled for execution.

T.P - The task whose entry point is the location

immediately preceding the call to T.P is sched-

uled for execution, and execution of the task

which called T.P is terminated.

T.F - Execution of the task which called T.F is

terminated.

As an example of the use of these system subroutines,

consider a task, whose entry point is SCHED, which schedules the

two tasks TASKl and TASK2 after a nonzero value is stored (by

some other task) in location SWITCH. One algorithm for this

task is the following:

-12-

CHECK

JMS CHECK

JMS* =T.P

LAC =TASK1

JMS* =T.S

LAC =TASK2

JMS* =T.S

JMS* =T.F

$DC 0

LAC SWITCH

SZA

ISZ CHECK

JMP* CHECK

SCHED JMS CHECK SKIP IF SWITCH IS SET

WAIT FOR SWITCH TO BE SET

GET ADDRESS OF FIRST TASK

SCHEDULE FIRST TASK

GET ADDRESS OF SECOND TASK

SCHEDULE SECOND TASK

TERMINATE TASK

GET SWITCH VALUE

SKIP IF SWITCH NOT SET

INDICATE SUCCESS

RETURN

The call to T.P is given whenever the subroutine CHECK produces

a failure return (in the same sense that some system subroutines

produce failure returns) to reschedule the call to CHECK. Be-

cause tasks are scheduled on a first-in first-out basis, the

rescheduled call to CHECK is not executed until each other eli-

gible task in the task queue has been executed.

A task allocates and releases I/O devices by calling

appropriate system subroutines, supplying them with "allocation

masks." An allocation mask is a representation of the set of

I/O devices which are involved in an allocation operation. Each

bit position in the mask is associated with one I/O device. If

a bit position contains a 1, the corresponding I/O device is

involved in the operation; otherwise, it is not. The bit posi-

tion assignments are given by the following table:

Bit Position I/O Device

9 201 Dataphone Input

10 201 Dataphone Output

11 Reader

12 Punch

13 Keyboard

14 Teleprinter

15 D/A Converter

16 Push Buttons

17 Display

-13-

The following system subroutines have been defined

for controlling I/O device allocation:

T.A - The I/O devices specified by the allocation mask

in bits 9-17 of the AC are allocated. The

calling task is terminated, and the return from

this subroutine is scheduled as a task to be

executed after the specified devices become

available. Bits 0-4 of the AC are ignored.

T.R - The I/O devices specified by the allocation mask

in bits 9-17 of the AC are released. Bits 0-4

of the AC are ignored.

In order to guarantee that all scheduled user tasks

become eligible for execution in a finite amount of time, I/O

device allocation must be performed according to the following

rule:

Whenever an I/O device is allocated, all other I/O

devices which are to be allocated before it is

released must also be allocated.

As an example of I/O device allocation, consider two

tasks, which are scheduled one immediately after the other,

whose I/O device allocation activity is summarized by the fol-

lowing tables (where t. . , > t. .):
1 z K T X X/K.

TasK #1:

Time Devices Allocated Devices Released

hi A

42 B

ha -

h4 C

hs -

Task #2:

Time Devices Allocated

hi C

t22 B

t23 -

B,C

Devices Released

B,C

-14-

Assume the rule given above is ignored, and the I/O devices

are allocated precisely as shown in the above tables. Then,

if > 42 s ^1 and t22^ " because Task #1 will 22 "12 l-21 w14
not release device B until it can allocate device C, and Task

#2 will not release device C until it can allocate device B.

By applying the allocation rule to the above tables,

the following new tables are obtained:

Task II;

Time

f

f

f

f

f

t'

11

12

13

14

15

16

Devices Allocated Devices Released

A,B,C -

- B,C

B,C -

- A,C

C -

- B,C

Task #2:

Time

f

f

t'

f

21

22

23

24

Devices Allocated

B,C

B

Devices Released

B

B,C

With this modification, all tasks will become eligible for

execution. (A new task is scheduled and the calling task is

terminated each time I/O devices are allocated.)

A subroutine which may be called by several concurrent-

ly executing tasks and which allows tasks other than the one

which called it to execute before it returns is in danger of

being reentered from one task while it is servicing another.

This event results in the loss of the return address for the

subroutine and perhaps some of the data upon which the sub-

routine operates. To facilitate the writing of reentrable sub-

routines (i.e., subroutines which are protected against reentry),

the following system subroutines have been defined:

-15-

T.L - Lock subroutine against reentry. If the loca-

tion which immediately follows the call to T.L

does not contain zero, the call to the subroutine

whose entry point immediately precedes the call

to T.L is rescheduled. Otherwise, the content

of the location which immediately precedes the

call to T.L is copied into the location which

immediately follows the call to T.L.

T.U - Unlock reentrable subroutine. The location

whose address is the address contained in the

word which immediately follows the call to T.U

plus 2 is zeroed, and a JMP to the address which

was stored in that location before it was zeroed

is executed.

Because both T.L and T.U must preserve the contents

of the AC and MQ, these subroutines have the following special

calling sequences:

Calling sequence for T.L:

 $DC 0 (reentrable subroutine entry

point)

JMS* »T.L

$DC 0 (save location for T.L)

 (return)

Calling sequence for T.U:

JMS* =T.U

$DC (subroutine entry point)

As an example of the use of T.L and T.U, consider the

reentrable subroutine WAIT which returns to its calling task

after all tasks on the task queue have had a chance to execute.

An algorithm for this subroutine is the following:

WAIT $DC 0

JMS* =T.L SET REENTRY LOCK

$DC 0 SAVE LOC FOR T.L

-16-

SKP SCHEDULE NEXT LOG AS TASK

SKP RETURN

JMS* =T.P SCHEDULE PREVIOUS LOG AS TASK

JMS* =T.U UNLOCK SUBROUTINE & RETURN

$DC WAIT SUBROUTINE ENTRY POINT

3.3 Format Conversions

Characters are represented internally in the System

by 6-bit codes to facilitate storage of three characters per

word. Since ASCII character codes must be available for tele-

type, paper tape, and dataphone I/O, conversions between ASCII

and 6-bit codes must be frequently performed. In addition,

the 11-bit sign-magnitude coordinates required by the display

control's vector mode must often be converted to and from 18-

bit two's complement representation. To satisfy these require-

ments, the following system subroutines have been defined:

C.B6 - The binary number given in the AC is converted

to its corresponding 6-bit octal representation,

which is returned in the AC and MQ (high-order

digits in AC, low-order digits in MQ).

C.6A - The 6-bit code given in bits 12-17 of the AC

is converted to the corresponding ASCII code,

which is returned in bits 10-17 of the AC, with

bits 0-9 cleared and the parity bit of the

ASCII code (i.e., bit 10 of the AC) set, re-

gardless of the parity. Bits 0-11 of the AC

are ignored on entry.

C.A6 - The ASCII code given in bits 10-17 of the AC

is converted to the corresponding 6-bit code,

which is returned in bits 12-17 of the AC,

with bits 0-11 cleared. Bits 0-9 of the AC

and the parity bit of the ASCII code (i.e.,

bit 10 of the AC) are ignored on entry.

-17-

C.CB - The vector mode sign-magnitude display coordi-

nate given in bits 7-17 of the AC is converted

to the corresponding two's complement represen-

tation, which is returned in the AC. Bits 0-6

of the AC are ignored on entry.

C.BC - The two's complement number in the AC is con-

verted modulo 2 to the corresponding vector

mode sign-magnitude display coordinate repre-

sentation, which is returned in bits 7-17 of

the AC with bits 0-6 cleared.

The 6-bit codes used by the System may each be repre-

sented by two octal digits as shown by the following table:

Second Octal Digit

■p
•H

•H
Q

(0
■p
u
o
■p
w
u
•rH

cr = carriage return

if = line feed

sp = space

All ASCII characters which do not appear in the table

are mapped into 77« . The only printing characters which are

treated in this manner are "%", "@", and " ".

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 8 9 A B C D E F

2 G H I J K L M N

3 0 P Q R S T U V

4 W X Y Z * / + -

5 () [] < = > t

6 +■ • i
• • • ? ! i

7 II $ # & cr it sp

3.4 Buffered I/O

Input data from the dataphone, the paper tape reader,

and the keyboard, as well as output data to the dataphone.

-18-

paper tape punch, and teleprinter, are buffered by the System.

In the event that an input buffer is empty or an output buffer

is full and the system subroutine which transfers data between

the buffer and a task is called, the return from the subroutine

is scheduled as a task to be executed only after the state of

the buffer changes, and execution of the calling task is termi-

nated.

3.4.1 Dataphone I/O

The jollowing system subroutines have been defined

for managing the 201 dataphone buffers:

B.FI* - An image is fetched from the 201 dataphone

input buffer and is returned in bits 10-17

of the AC. Bits 0-9 of the AC are cleared,

unless the image is an end-of-record charac-

ter in which case bits 0-4 are set and bits

5-9 are cleared. A failure return is made

if the data set is not connected.

B.FO* - The image in bits 10-17 of the AC is sent to

the 201 dataphone output buffer. If bit 0

of the AC is set, the image is interpreted

as an end-of-record character, and transmis-

sion is begun. A failure return is made

before the image is buffered if the data set

is not connected.

Since actual dataphone transmission is record-oriented

(although transfer of data between the dataphone buffers and

tasks is not) , the return from B.FI to the calling task is de-

layed until the dataphone input buffer contains a complete re-

cord, and the return from B.FO is delayed until the last record

transmitted has been affirmatively acknowledged by the other

party. In simpler terms, the dataphone input buffer is con-

sidered to be empty whenever it does not contain a complete

record, and the dataphone output buffer is considered to be

full whenever the last transmitted record has not been affirma-

tively acknowledged.

-19-

Dataphone records are formatted according to the

conventions ador :r.d by The University of Michigan Computing

Center at the time of this report. Each record is formatted

(if transmitted) or interpreted (if received) by the System

and consists of the following sections:

1. Several synchronous idle (SYN) characters (026g).

(At least two are required when receiving; eight are trans-

mitted.)

2. A data link escape (DLE) character (220g).

3. Data. The 8-bit images in this section are arbi-

trary binary, with the exception that a DLE character (with

either parity) is preceded by a DLE. The first DLE is ignored

when the record is received, and serves only to cause the second

one to be interpreted as data. (A pair of characters consisting

of a DLE followed by a SYN is ignored when receiving, although

this sequence is never transmitted.)

4. A DLE character.

5. An end-of-record character.

6. The high-order 8 bits of the block check (des-

cribed below).

7. The low-order 8 bits of the block check (des-

cribed below).

8. A pad character (377«).

In order to facilitate detection of burst errors, a

16-bit cyclic block check is included in each dataphone record.

For purposes of computing this block check, the data sequence

(consisting of the concatenation of the second through the

last data images, plus the end-of-record character) is regarded

as a cyclic polynomial code. The block check is obtained by

simultaneously multiplying the polynomial representation of

the data sequence by X and dividing itbyX + X +X+1

(where the coefficients of the polynomials are taken from the

field of two elements). The following diagram illustrates this

operation:

-20-

14 •e- 15

16-bit block check at end of operation (shift
register initially clear)

• • •

end-of-record
character

last data
image

third data
image

second
data image

4)

Data Sequence
(low-order bits of each image used first)

Whenever a dataphone record is received by either

party, the block check is computed and compared with the re-

ceived block check. If the two block checks match, the data-

phone record is assumed to have been received correctly, and

an affirmative acknowledgment is returned when the receiving

party is ready for the next record. However, if the two block

checks do not match, a negative acknowledgment, which is a

request for the record to be retransmitted, is returned, and

the incorrectly received record is discarded. The System

assumes complete responsibility for managing acknowledgments

and retransmissions for the 339.

Whenever a dataphone record is received with a cor-

rect block check, the first data image is examined. If it is

zero, user tasks are given access to it via the system subrou-

tine B.FI. Otherwise, a special 201-to-teleprinter task is

scheduled to type the record (interpreting it as a sequence of

ASCII codes) as soon as the teleprinter becomes available. In

-21-

this way, unsolicited messages from the remote party are typed

and routed clear of tasks which are using the dataphone.

Whenever the end-of-record character for either a

transmitted or received record is an enquiry (0058) or an end-

of-transmission (204_), both dataphone buffers (input and out-

put) are cleared, and the last record transmitted is considered

to have been affirmatively acknowledged. Note that transmitted

records of this form will be processed normally by the System

(except that immediate acknowledgment will be assumed), but

received records of this form will be discarded once the end-

of-record character is detected.

As an example of the use of B.FI and B.FO, consider

the task MIRROR which receives 64 dataphone images in an arbi-

trary number of records (not including the zero images required

to route records to tasks), transmits all of them in one data-

phone output record, and ignores the remainder of the last data-

phone input record which it examined. An algorithm for this

task is the following (L.T is described in Section 3.11):

MIRROR LAW 600

JMS* »T.A

LAW 17700

DAC COUNT

START JMS* =B.FI

JMP HELP

READ JMS* =B.FI

JMP HELP

SPA

JMP START

JMS* = B.FO

JMP HELP

ISZ COUNT

JMP READ

JMS* =B.FI

JMP HELP

GET ALLOCATION MASK

ALLOCATE 201 INPUT & OUTPUT

LOAD AC WITH -64

INITIALIZE IMAGE COUNT

GET REDUNDANT IMAGE

DATA SET NOT CONNECTED

GET INPUT IMAGE

DATA SET NOT CONNECTED

SKIP IF NOT END OF RECORD

READ NEXT RECORD

PUT IN OUTPUT BUFFER

DATA SET NOT CONNECTED

SKIP IF RECORD LONG ENOUGH

READ NEXT IMAGE

GET INPUT IMAGE

DATA SET NOT CONNECTED

-22-

HELP

TEXT

SMA

JMP

JMS*

JMP

LAW

JMS*

JMS*

LAW

JMS*

LAW

JMS*

LAC

JMS*

LAW

JMS*

JMS*

$DC

$TEXT

$DC

SKIP IF END OF RECORD

*-3 READ ANOTHER IMAGE

=B.FO TERMINATE OUTPUT RECORD

HELP DATA SET NOT CONNECTED

600 GET ALLOCATION MASK

=T.R RELEASE 201 INPUT & OUTPUT

=T.F TERMINATE TASK

600 GET ALLOCATION MASK

=T.R RELEASE 201 INPUT & OUTPUT

10 GET ALLOCATION MASK

=T.A ALLOCATE TELEPRINTER

=TEXT GET ADDRESS OF TEXT LIST

■L.T TYPE TEXT LIST

10 GET ALLOCATION MASK

■T.R RELEASE TELEPRINTER

=T.F TERMINATE TASK

20

' ATA SET NOT CONNECTED.

747577

'MIRROR' TERMINATED.

3.4.2 Paper Tape I/O

The following system subroutines have been defined

for managing the paper tape reader and punch buffers:

B.R* - An image is fetched from the reader buffer and

returned in bits 10-17 of the AC. Bits 0-9 of

the AC are cleared. Only one end-of-record

character (zero) may be returned by two succes-

sive calls to B.R. A failure return is made

if the reader is out of tape and the reader

buffer is empty.

B.P* - The image in bits 10-17 in the AC is sent to

the punch buffer. A failure return is made

if the punch is out of tape and the punch

buffer is full.

-23-

Paper tape formats are arbitrary, subject to the re-

striction that a zero image (i.e., a line of blank tape) which

immediately follows a nonzero image is interpreted as an end-of-

record character and all other zero images are ignored. However,

the format which is read and punched by the data transfers of

the idle-time task (Section 4.1) is recommended for compatibil-

ity reasons. In this format, the two high-order bits of each

8-bit tape image are interpreted as control information, and

the remaining 6 bits are interpreted as data. The two control

bits are interpreted as follows:

00 mode change

01 binary origin

10 binary data

11 alphanumeric data

There are 64 possible mode changes (designated by

the low-order 6 bits of a mode change tape image), only one of

which has been defined at the time of this writing, i.e., the

end-of-record character 000R. (An example of possible future

mode change assignments is a set of relocation modes for relo-

catable binary records.)

A binary block consists of three binary origi.. images

followed by a multiple of three binary data images. The block

represents a set of 18-bit words to be loaded starting at the

address indicated by the data bits of the three origin images.

For example, the binary block which indicates that location

23572g should contain 621365g and that location 23573g should

contain 176234g is the following:

102

135 origin 23572

172

262

213 data 621365

265

217

262 data 176234

234

-24-

A binary record is a concatenation of binary blocks, followed

by the end-of-record character (OOOg).

An alphanumeric record consists of an arbitrary

number of alphanumeric tape images (where the 6 data bits in

each image represent a 6-bit character code), followed by an

end-of-record character (OOOg) .

As an example of the use of the paper tape I/O system

subroutines, consider a task COPY which copies one record of

paper tape:

COPY

RERR

PERR

LAW 140

JMS* ■T.A
JMS* =B.R

JMP RERR

SNA

JMP *+4

JMi'* =B.P

JMP PERR

JMP COPY+2

JMS* =B.P

JMP PERR

LAW 140

JMS* -T.R

JMS* =T.F

LAC =RERRT

SKP

LAC =PERRT

DAC TEXT

LAW 140

JMS* -T.R

LAW 10

JMS* -T.A

LAC TEXT

JMS* -L.T

LAC =END

GET ALLOCATION MASK

ALLOCATE READER & PUNCH

GET IMAGE FROM READER

READER OUT OF TAPE

SKIP IF NOT END OF RECORD

END OF RECORD

PUNCH IMAGE

PUNCH OUT OF TAPE

READ NEXT IMAGE

PUNCH END OF RECORD

PUNCH OUT OF TAPE

GET ALLOCATION MASK

RELEASE READER & PUNCH

TERMINATE TASK

GET ADDRESS OF TEXT LIST

TYPE DIAGNOSTIC

GET ADDRESS OF TEXT LIST

SAVE ADDRESS OF TEXT LIST

GET ALLOCATION MASK

RELEASE READER & PUNCH

GET ALLOCATION MASK

ALLOCATE TELEPRINTER

GET ADDRESS OF TEXT LIST

TYPE DIAGNOSTIC

GET ADDRESS OF TEXT LIST

.

-25-

RERRT

PERRT

END

JMS*

LAW

JMS*

JMS*

$DC

$TEXT

$DC

$TEXT

$DC

$TEXT

$DC

$TEXT

$DC

TYPE TEXT LIST

GET ALLOCATION MASK

RELEASE TELEPRINTER

TERMINATE TASK

=L.T

10

■T.R
■T.F
2

"READER"

2

"PUNCH"

15

"OUT OF TAPE"

747577

"COPY TASK TERMINATED"

747577

3.4.3 Teletype I/O

The following system subroutines have been defined

for managing the keyboard and teleprinter buffers:

B.K - A 6-bit character is fetched from the keyboard

buffer and returned in bits 12-17 of the AC.

Bits 0-11 of the AC are cleared.

B.T - The three six-bit characters in bits 0-5, 6-11,

and 12-17 of the AC are sent to the teleprinter

buffer to be typed in respective order. (The

null character 77ß will not be typed, even as

a non-printing character.)

As an example of the use of these subroutines, con-

sider the task ENCODE which accepts characters from the key-

board and types the octal represent, ation of the corresponding

6-bit codes. When a null character is typed, the task is

terminated. An algorithm for this task is the following:

üAW 30

JMS* =T.A

JMS* =B.K

SAD = 77

JMP END

GET ALLOCATION MASK

ALLOCATE KEYBOARD & TELEPRINTER

GET CHARACTER FROM KEYBOARD

SKIP IF NOT NULL CHARACTER

TERMINATE TASK

JMS* =C.B6

LACQ

XOR =770000

JMS* ■B.T
LAW 17475

JMS* =B.T

JMP ENCODE+

LAW 30

JMS* -T.R

JMS* =T.F

-26-

CONVERT TO 6-BIT OCTAL CODE

GET LOW-ORDER DIGITS

REMOVE HIGH-ORDER ZERO

TYPE ENCODED CHARACTER

GET CARRIAGE RETURN, LINE FEED CODE

TYPE CARRIAGE RETURN, LINE FEED

ENCODE+2 PROCESS NEXT CHARACTER

i:Nl) LAW 30 GET ALLOCATION MASK

RELEASE KEYBOARD & TELEPRINTER

TERMINATE TASK

3.5 Nonbufforod I/O

Three devices which might appear to require buffering

are not buffered: the clock, the A/D converter, and the D/A

converter. The clock, which is normally u?od in an interactive

system to check for the occurrence of certain events within

specified time intervals, is often programmed in a multiprogram-

ming system such that any task may use it at any time. This

is accomplished through the use of a buffer into which entries

(each consisting of a return pointer and a time interval) may

be inserted at arbitrary points. Since the buffer required is

considerably more complicated than those used by other devices,

the cost of programming the clock in this manner was found to

be excessive.

Since A/D converter data should be interpreted in

real time, these data are not buffered. Instead, whenever a

task calls the system subroutine to obtain data from the A/D

converter, the device is selectedr the return from the subrou-

tine is scheduled as a task to be executed after the conversion

is complete, and execution of the calling task is terminated.

The D/A converter requires only two microseconds to

produce an output after it is selected, whereas the minimum

time between selections of a particular D/A channel is four

microseconds. Consequently, the System does not buffer D/A

converter data.

-27-

The following system subroutines have been defined

for nonbuffered I/O:

N.C - Execution of the calling task is terminated and

the return from N.C is scheduled as a task to

be executed at least the number of sixtieths

of a second later which is the two's complement

of the number given in the AC.

N.A - The channel of the A/D converter specified in

bits 12-17 of the AC is selected, and the con-

verted value, when obtained, is returned in

bits 0-11 of the AC. Bits 12-17 of the AC are

cleared. The returned value, if interpreted as

an ordinary two's complement number, is -2 (l+V/5),

where V is the applied input voltage (which

ranges from 0 tu -10 volts).

N.Dl- D/A converter channel #1 is selected. The out-

put of the channel is set to -5(1+2 A) volts,

where A is the content of the AC.

N.D2- D/A converter channel #2 is selected. The out-

put of the channel is set to -5(1+2 A) volts,

where A is the content of the AC.

N.D3- D/A converter channel #3 is selected. The out-
-17

put of the channel is set to -5(1+2 A) volts,

where A is the content of the AC.

As an example of a use of N.C, consider the task

PROMPT which types "PLEASE TYPE NOW" onre sbout every eight

seconds until the operator types something on the keyboard,

and types "THANK YOU" when the operator finishes typing a line.

An algorithm for this task is the following:

PROMPT LAW 3 0 GET ALLOCATION MASK

JMS* =T.A ALLOCATE KEYBOARD & TELEPRINTER

DZM DONE INDICATE NO KEYBOARD RESPONSE

LAC =POLITE GET ADDRESS OF KEYBOARD CHECKER

-28-

POLITE

TXT1

TXT2

JMS*

LAC

JMS*

LAW

JMS*

LAC

SNA

JMP

JMS*

JMS*

XOR

DAC

SAD

JMP

JMS*

JMP

LAC

JMS*

LAW

JMS*

JMS*

$DC

$TEXT

$DC

$UC

$DC

$TEXT

$DC

"T.S SCHEDULE KEYBOARD CHECKER

=TXT1 GET ADDRESS OF TEXT LIST

=L.T TYPE "PLEASE TYPE NOW"

-1000 GET TIME PARAMETER

=N.C WAIT ABOUT 8 SECONDS

DONE GET KEYBOARD RESPONSE SWITCH

SKIP IF RESPONSE OBTAINED

PROMPT OPERATOR AGAIN

TERMINATE EXECUTION

GET KEYBOARD CHARACTER

PRECEDE WITH NULL CHARACTERS

SET KEYBOARD RESPONSE SWITCH

SKIP IF NOT CARRIAGE RETURN

END OF INPUT LINE

ECHO CHARACTER ON TELEPRINTER

GET ANOTHER CHARACTER

GET ADDRESS OF TEXT LIST

TYPE "THANK YOU"

GET ALLOCATION MASK

RELEASE KEYBOARD AND TELEPRINTER

TERMINATE EXECUTION

PROMPT+5

=T.F

=B.K

=777700

DONE

=777774

*+3

=B.T

POLITE

■TXT2
■L.T
30

^T.R

=T.F

6

"PLEASE TYPE NOW"

747577

5

747577

"THANK YOU"

747577

As an example of the use of N.A, consider the task

COMPAR which samples channels 0 and 1 of the A/D converter until

the inputs on the two channels are close enough to each other

that the same value is read from each channel. When this condi-

tion is satisfied, the comment "ANALOG INPUTS MATCH" is typed

on the teletype. An algorithm for this task is the following:

-29-

COMPAR CLA

JMS* =N.A

DAC VALUE

LAW 1

JMS* =N.A

CMA

TAD VALUE

CMA

SZA

JMP COMPAR

LAW 10

JMS* =T.A

LAC FOUND

JMS* =L.T

LAW 1Ü

JMS* =T.R

JMS* =T.F

FOUND $DC 10

$TEXT "ANALOG IN

$DC 747577

3.6 Push-Button Processing

GET CHANNEL 0 PARAMETER

CONVERT CHANNEL 0 VALUE

SAVE CHANNEL 0 VALUE

GET CHANNEL 1 PARAMETER

CONVERT CHANNEL 1 VALUE

FORM 1 COMPLEMENT

ADD CHANNEL 0 VALUE

FORM DIFFERENCE IN VALUES

SKIP IF VALUES EQUAL

OBTAIN NEW SAMPLES

GET ALLOCATION MASK

ALLOCATE TELEPRINTER

GET ADDRESS OF TEXT LIST

TYPE "ANALOG INPUTS MATCH"

GET ALLOCATION MASK

RELEASE TELEPRINTER

TERMINATE EXECUTION

INPUTS MATCH"

The following system subroutines have been defined

for managing the push buttons which are associated with the

display control:

P.T - The task whose address is given in bits 3-17 of

the AC is declared to be the service task for

manual operation of the push buttons (i.e.,

this task is scheduled whenever the state of

the push buttons is altered by the operator).

If the AC contains zero when P.T is called, a

null s' rvice task (i.e., one which calls P.E

and terminates) is used.

P.E - Manual operation of the push buttons JS enabled

(i.e., the state of the push buttons may be

changed by the operator).

-30-

P.D - Manual operation of the push buttons is dis-

abled (i.e., the state of the push buttons may

not be changed by the operator). A call to P.D

is effected whenever the operator changes the

state of the push buttons.

P.R - Push buttons 0-11 are read into bits 6-17 of

the AC, and bits 0-5 of the AC are cleared.

P.S - Push buttons 0-11 are set according to bitc

6-17 of the AC.

As an example of the use of these subroutines, consider

the task BUTTON which enables manual operation of the push but-

tons and sets the button numbered one creater (modulo 12) than

the number of the one pushed by the operator, The procedure is

terminated and all push buttons are cleared when a keyboard

character is struck. An algorithm for this task is the follow-

ing:

BUTTON LAW 22

JMS* =T.A

LAC =SERV

JMS* ■P.T

CLA

DAC STATE

JMS* ■ =P.S

JMS* =P.E

JMS* =B.K

JMS* =P.D

CLA

JMS* =P.S

CLA

JMS* •-^P. T

LAW 22

JMS* =T.R

JMS* =T.F

SERV JMS* =P.R

GET ALLOCATION MASK

ALLOCATE KEYBOARD & PUSH BUTTONS

GET ADDRESS OF SERVICE TASK

DECLARE SERVICE TASK

GET INITIAL PUSH BUTTON STATE

SAVE FOR USE BY SERV

SET INITIAL PUSH BUTTON STATE

EKABLE MANUAL OPERATION

GET KEYBOARD CHARACTER

DISABLE MANUAL OPERATION

GET FINAL PUSH BUTTON STATE

CLEAR PUSH BUTTONS

GET NULL SERVICE PARAMETER

DECLARE NULL SERVICE TASK

GET ALLOCATION MASK

RELEASE KEYBOARD & PUSH BUTTONS

TERMINATE TASK

READ PUSH BUTTONS

.

XOR STATE

RCR

SNA

] AC = 4000

MAC STATE

JMS* O.S

JMS* =P.r

JMS* -T. ^

-31-

ISOLATE LAST BUTTON PUSHED

FORM MASK FOR SETTING BUTTONS

SKIP JF NOT BUTTON #11

SE'J B' T'ON #0 BIT

SAVE NEW PUSH BUTTON STATE

SET NEW PUSH BUTTON STATE

ENAL^E MANUAL OPERATION

TERMINATE TASK

3.7 Display Control Communication

The following system subroutines have been defined

for communicating with the display control:

DE - Display interrupts are enabled (i.e., a light

pen flag interrupt or an internal stop inter-

rupt will cause the System to read the display

status information required for D.A, D.Y, D.X,

and D.O and to schedule the appropriate ser-

vice task) .

D.D - Display interrupts are disabled (i.e., the

System will ignore light pen flag and internal

stop interrupts). A call to D.D is effected

whenever a display interrupt occurs.

D.P - The task whose address is given in bits 3-17

of the AC is declared to be the service task

for light pen flags. This task is scheduled

whenever the light pen sees an intensified

portion of the display on which the light pen

is enabled (see Section 3.10), providing that

display interrupts are enabled (via D.E). If

the AC contains zero when D.P is called, a

null service task (i.e., one which calls D.E

and terminates) is used.

D.A - The address of the display on the last display

interrupt is returned in bits 3-17 of the AC

with bits 0-2 clear.

-32-

D.Y - The y coordinate of the display (measured

relative to the center of the screen in seal.,

xl) on the last display interrupt is returne.

in the AC as a two's cempioment number.

D.X - The x coordinate of the display (measured

relative to the center of tne screen in scale

xl) on the last display interrupt is returned

in the AC as a two's complement number.

D.O*- The address which is the operand of the push

jump instruction which was the number of entr^f ->

given in bits 12-17 of the AC ibove the last

entry in the display control's push-down list or

the last display interrupt is returned in bits

3-17 of the AC with bits 0-2 clear. (A more

meaningful interpretation of this subroutine

may be obtained from the examples in Section

3.10.) A failure return is made if the indicated

push jump instruction does not exist.

The external stop interrupt and the edge flag inter-

rupt are not used. The function of the external stop interrupt,

may be performed via an unconditional internal stop interrupt

(via S.LU, which is described in Section 3.1j). Since the

virtual display area established by the System is 75 inches by

75 inches, the edge flags, if used, would occur on the left

and lower edges of the screen, but not on the upper or right

edges. Because of this inconsistency, the edge flags are not

used.

3.8 Light Pen Tracking

A light pen tracking algorithm is supplied with the

System to enable user tasks to follow the motion of the light

pen. This algorithm has been empirically determined to track

the light pen at any attainable speed, and it is insensitive

to changes in direction because it does not involve prediction.

-33-

The tracking algorithm may be described with the aid

of the following diagram:

12

When the display for the tracking algorithm is begun,

strokes 1 and 2 are drawn. (Strokes 1 and 2 are actually coin-

cident.) The x coordinate of the first light pen hit on each

stroke is recorded. If both x coordinates are obtained, a new

x coordinate for the tracking cross is computed as their aver-

age. Strokes 3 and 4 are then drawn, and a new y coordinate

for the tracking cross is computed in similar manner if both

y coordinates are obtained.

-34-

If any one of the four coordinates required to com-

pute a new position of the tracking cross is not obtained, a

search pattern consisting of concentric squares 5 through 12

is drawn. When a light pen hit is detected on any one of these

squares, the search pattern is terminated, and the tracking

cross is placed at the coordinates of the hit. If square 12

is completed and no light pen hit is detected, the tracking

process is terminated.

Whenever the tracking cross is positioned via the

search pattern, rather than by averaging coordinates, the

tracking display is immediately repeated. The remainder of the

active display structure (Section 3.9) is not displayed until

the tracking cross can be positioned by averaging coordinates.

In this way, the tracking display is given priority over all

other displays whenever the light pen is being moved rapidly

and tracking is in process.

The following system subroutines have been defined

for controlling the tracking process:

X.I - The tracking cross is placed at the y coordinate

given in the AC and the x coordinate given in

the MQ, and the tracking process is begun. The

coordinates, which are given as two's complement

numbers, are interpreted modulo 2 measured

in scale xl relative to the center of the screen.

X.R - The tracking process is resumed with the track-

ing cross at the coordinates where tracking was

last terminated (by X.T or by completion of

square 12).

X.T - The tracking process is terminated. (The track-

ing cross is removed from the screen.)

X.s*- A failure return is made if tracking is in

process.

X.Y - The y tracking coordinate is returned in the AC

as a two's complement number measured in scale xl

relative to the center of the screen. If tracking

-35-

is not in process, the y coordinate where track-

inq was last terminated is returned.

X.X - The x tracking coordinate is returned in the

AC as a two's complement number measured in

scale xl relative to the center of the screen.

If tracking is not in process, the x coordinate

where tracking was last terminated is returned.

The tracking algorithm is independent of D.E and D.D.

3.9 Display Structure Topology

Each entity to be displayed is represented in the

display structure provided by the System as a position in the

hierarchy of the entities which constitute the picture. Each

position in the hierarchy is implemented as a display subrou-

tine which is called a level. A level which is being executed

by the display control at least once on every frame is called

an active level. One particular level, which is always active

and is an integral part of the system, represents the 75 inch

by 75 inch virtual display area of the display control and is

called the highest active level.

A display subroutine which is not itself e level and

which contains no calls to levels is called a leaf. All of

the drawing of visible portions of the picture is accomplished

by leaves. A leaf is subject to the restriction that the state

of the display (coordinates, light pen status, scale, intensity,

blink status, light pen sense indicator) must be the same when

the subroutine returns as when it is entered. Consequently,

because the display control's POP instruction does not restore

coordinates, the only data modes which are useful in leaves

are vector mode, short vector mode, and increment mode.

The set L of all levels and leaves (both active and

non-active) is partially ordered, i.e., there exists a relation

"<" defined on L such that

(1) VxeL

(2) Vx, yeL

(3) Vx, y, zeL

-36-

x <_ x

x <_ y and y£x = >x = y

x < y and y<z=>x<z

The semantic interpretation of the expression x ^ y is that

any modification of the entity represented by the level x (or

in the drawing produced by the leaf x, if x is a leaf) will

effect a corresponding modification in the entity represented

by the level y. When x £ y , the level y ic said to own the

level or leaf x. An attribute of a level y is a level or

leaf x such that x <_ y and there does not exist a level z

different from x and y such that x <_ z and z <_ y .

As an example of this interpretation of the relation

"<_", consider a triangle which is to be represented internally

as a set of three lines:

A display structure for this triangle may be represented by

the following diagram. (In the diagram, x <^ y is represented

by a line joining x and y such that y appears above x

in the diagram.) A triangle

line a line b line c

Note from the diagram that the triangle owns each of its

sides (lines a, b, and c). If line b is now deleted, the

display structure assumes the following form:

triangle

line a line c

-37-

The triangle is obviously modified by this operation (in fact,

it is no longer a triangle). However, the fact that the tri-

angle has been modified does not imply that all of its attributes

have been modified. In this example, lines a and c remain un-

changed.

The set X of all active levels and the leaves which

they own is also partially ordered, since X cr L and L is

partially ordered. Because the highest active level represents

the virtual display area of the display control, it owns every

element of X. Consequently, if the operator "+" is defined

by the conditions

and

(1) Vx, yeX

(2) Vx, yeX

(3) Vx, y, zeX

x + yeX

x £ x + y and y £ x + y

x < z and y < z —=> x + y < z ,

the pair (X,+) is a semilattice. The semantic interpretation

of the expression x+y is that x+y is a level which repre-

sents the most primitive entity which owns both of the entities

represented by the levels x and y .

As an example of the interpretation of the operator

"+", consider the following drawing of one exterior wall of a

house:

D D D

For purposes of illustration, assume that all three windows in

the picture are identical, each instance of each entity in the

drawing is represented by a separate level, and the drawing

shown is the only one being displayed. The display structure,

then, assumes the following form:

-38-

perimeter
of wall

highest active level

wall of house

perimeter
of door

window drawing

Assume that a task which records two references to the picture

with the light pen is being executed, and that the most primi-

tive entity which owns both items referenced is to be deleted.

Clearly, the portion of the structure which should be removed

consists of everything which x+y owns, where x and y are

the two levels which represent the entities referenced with

the light pen. For example, if the door perimeter and a win-

dow in the wall of the house are referenced, the entire wall

of the house is deleted, but if the door perimeter and the

window in the door are referenced, only the door is deleted.

A level is implemented as the data structure shown

by the following diagram (all numbers are octal):

-39-

Head

Node

Tail

r
clear LPSI or no operation
count parameters or no operation
set parameters
enter vector mode
y coordinate (no intensity bit)
x coordinate and escape bit
jump instruction
pointer to first node or tail

r
push jump instruction

, pointer to attribute
\ jump instruction
pointer to next node or tail

r

v

conditional skip
internal stop
address of service task
blink off or no operation
enter vector mode
-y coordinate (no intensity bit)
-x coordinate and escape bit
pop instruction

76

— 0
761121

762001
0

76201-
0
762001
0

rW

76
761400
0

761121

763000

J

The following system subroutines have been defined

for managing the display structure topology. (Examples of

their use are given in Section 3.10.)

S.TL*- A level is created and its address (i.e., the

address of the first location in its head) is

returned in bits 3-17 of the AC with bits 0-2

clear. A failure return is made if the level

cannot be created because of insufficient free

display storage.

S.TD*- The non-active level whose address is given in

bits 3-17 of the AC is destroyed. A failure

return is made if the level has attributes.

S.TI*- The level or leaf whose address is given in

bits 3-17 of the MQ is inserted into (i.e.,

made an attribute of) the level whose address

is given in bits 3-17 of the AC. The created

node is inserted immediately after the head

-40-

in the level data structure. A failure re-

turn is made if the required node cannot be

created because of insufficient free display

storage.

S.TR*- The attribute whose address is given in bits

3-17 of the MQ is removed from the level

whose address is given in bits 3-17 of the

AC. This subroutine does not return until

the display control has completed the current

frame. (Tasks other than the calling -cask are

executed during this delay.) A failure return

is made if the specified attribute is not

found in the specified level.

3.10 Level Modification

The following system subroutines have been defined

for modifying existing levels:

S.LH - The address of the highest active level is

returned in bits 3-17 of the AC with bits 0-2

clear.

S.LY - The y coordinate of the level whose address

is given in bits 3-17 of the AC is set to the

value given in the MQ. The given coordinate

is interpreted as a two's complement number in

the scale of the specified level, measured

relative to the y coordinate of each level of

which the specified level is an attribute.

This subroutine has no effect on the highest

active level, where the coordinates are at

the center of the screen.

S.LX - The x coordinate of the level whose address is

given in bits 3-17 of the AC is set to the

value given in the MQ. The given coordinate

is interpreted as a two's complement number in

-41-

the scale of the specified level, measured

relative to the x coordinate of each level

of which the specified level is an attribute.

This subroutine has no effect on the highest

active level, where the coordinates are at the

center of the screen.

S.LP - The scale, intensity, and light pen status are

set on the level whose address is given in bits

3-17 of the AC according to bits 9-17 of the MQ.

The content of the MQ is interpreted as follows

Bits Interpretation

9 set scale according to bits 10-11

10-11 n, where scale is x2

12 set light pen status according to bit 13

13 light pen status (1 = enabled, 0 = disabled)

14 set intensity according to bits 15-17

15-17 intensity value

This subroutine has no effect on the highest

active level, where the scale is x8, the

intensity is 7, and the light pen is disabled.

S.LBE- The displays generated by calls (either direct

or indirect) to leaves from the level whose

address is given in bits 3-17 of the AC are

caused to blink with a 0.5-second period. Be-

cause the 339 POP instruction does not restore

the blink status, care must be taken to insure

that this blink is not simultaneously effec-

tive on any level of which the given level is

an owner. This subroutine has no effect on

the highest active level, where blink is dis-

abled.

S.LBD- Blinking of the level whose address is given

in bits 3-17 of the AC is disabled (i.e., the

effect of a call to S.LBE is removed).

•

-42-

S.LC - The scale and/or intensity is counted up or

down one unit on the level whose address is

given in bits 3-17 of the AC according to bits

12-15 of the MQ, which are interpreted as

follows:

Bit Interpretation

12 Count scale according to bit 13

13 1 = multiply scale by 2, 0 = divide scale by 2

14 Count intensity according to bit 15

15 1 = increment intensity by unity,

0 = decrement intensity by unity.

This subroutine has no effect on the highest

active level.

S.LU - »n unconditional scheduling of the task whose

address is given in bits 3-17 of the MQ is

effected whenever display interrupts are en-

abled (via D.E) and the tail of the level whose

address is given in bits 3-17 of the AC is

executed. This subroutine has no effect on

the highest active level.

S.LS - The task whose address is given in bits 3-17 of

the MQ is scheduled whenever display interrupts

are enabled (via D.E) , the tail of the level

whose address is given in bits 3-17 of the AC

is executed, and the coordinates of that level

are on the screen. This subroutine has no

effect on the highest active level.

S.LL - The task whose address is given in bits 3-17

of the MQ is scheduled whenever display inter-

rupts are enabled (via D.E), the tail of the

level whose address is given in bits 3-17 of

the AC is executed, and the light pen sense

indicator has been set during execution of that

level. This subroutine has no effect en the

highest active level.

-43-

S.LN - The effect of S.LU, S.LS, or S.LL is removed

from the level whose address is given in bits

3-17 of the AC.

Whenever the scale, light pen status, intensity, blink

status, or coordinates are not set on a level, the quantities

which are not set on that level are the same as those on the

level of which it is an attribute.

Some user subroutines which call these system subrou-

tines, as well as those in Section 3.9, are given below. LVL

generates a level, inserts a specified attribute into it, sets

the x and y coordinates and display parameters on the generated

level, and inserts the generated level into a specified owner

level. BUTN calls on LVL, and then establishes a task to be

scheduled whenever the light pen sense indicator is set while

the display control is executing the generated level. BUTX

generates a text leaf from a specified text list, and then calls

on BUTN, using the generated text leaf as the attribute para-

meter. CHEW (which calls on ATTR to find the first attribute

of a level) destroys a given display structure, and salvages

all storage from the destroyed levels and text leaves. The

display structure on which CHEW operates must satisfy two con-

ditions :

(1) It must assume the form of a semilattice.

(2) The maximum element of the display structure must

not be owned by any level (other than itself, if it itself

is a level). (L.D and L.L are described in Section 3.11.)

♦CALLING SEQUENCE:
* JMS LVL

* $DC

* $DC

* $DC

* $DC
*

(LOC CONTAINING POINTER TO OWNER)

(Y COORDINATE)

(X COORDINATE)

(DISPLAY PARAMETER)

(RETURN IF DISPLAY STORAGE EXCEEDED)

(RETIRN)

-44-

*AC CONTENT ON ENTRY:

* POINTER TO ATTRIBUTE

*AC CONTENT ON RETURN:
*

LVL

POINTER TO CREATED LEVEL

$DC 0

JMS* =T.L

$DC 0

DAC LVL 4

JMS* = S.TL

JMP LVL 3

DAC LVL 5

LAC LVL 4

LMQ

LAC LVL 5

JMS* =S.TI

JMP LVL 2

LAC* LVL+2

DAC LVL 4

ISZ LVL+2

LAC* LVL+2

LMQ

LAC LVL 5

JMS* =S.LY

ISZ LVL+2

LAC* LVL+2

LMQ

LAC LVL 5

JMS* =S.LX

ISZ LVL+2

LAC* LVL+2

LMQ

LAC LVL 5

JMS* «S.LP

LAC LVL 5

LMQ

SET REENTRY LOCK

SAVE POINTER TO ATTRIBUTE

CREATE A LEVEL

DISPLAY STORAGE EXCEEDED

SAVE POINTER TO LEVEL

GET POINTER TO ATTRIBUTE

SET UP PARAMETER

GET POINTER TO LEVEL

INSERT ATTRIBUTE

DISPLAY STORAGE EXCEEDED

GET FIRST PARAMETER

SAVE FIRST PARAMETER

ADVANCE TO NEXT PARAMETER

GET Y COORDINATE

SET UP PARAMETER

GET POINTER TO LETT

SET Y COORDINATE

ADVANCE TO NEXT PARAMETER

GET X COORDINATE

SET UP PARAMETER

GET POINTER TO LEVEL

SET X COORDINATE

ADVANCE TO NEXT PARAMETER

GET DISPLAY PARAMETER

SET UP PARAMETER

GET POINTER TO LEVEL

SET DISPLAY PARAMETER

GET POINTER TO LEVEL

SET UP PARAMETER

■

-45-

LAC* LVL4

JMS* =S.TI

JMP LVLl

LAC LVL5

JMP LVL3+2

LVL1 LAC LVL5

JMS ATTR

$DC 0

LMQ

LAC LVL5

JMS* =S.TR

$DC 0

LAC LVL5

JMS* =S.TD

$DC 0

JMP LVL3+3

LVL2 LAC LVL5

JMS* =S.TD

$DC 0

LVL3 ISZ LVL+2

ISZ LVL+2

ISZ LVL+2

ISZ LVL+2

JMS* =T,U

$DC LVL

♦CALLING SEQUENCE:
* JMS BUTN
* $DC

* $DC

* $DC

* $DC

*

*

$DC

*

GET POINTER TO OWNER

INSERT CREATED LEVEL

DISPLAY STORAGE EXCEEDED

GET POINTER TO CREATED LEVEL

RETURN

GET POINTER TO LEVEL

GET FIRST ATTRIBUTE

LVL PROGRAMMING ERROR

SET UP PARAMETER

GET POINTER TO LEVEL

REMOVE ATTRIBUTE

LVL PROGRAMMING ERROR

GET POINTER TO LEVEL

DESTROY LEVEL

LVL PROGRAMMING ERROR

RETURN

GET POINTER TO LEVEL

DESTROY LEVEL

LVL PROGRAMMING ERROR

INCREMENT RETURN POINTER

INCREMENT RETURN POINTER

INCREMENT RETURN POINTER

INCREMENT RETURN POINTER

UNLOCK LVL & RETURN

(LOC CONTAINING POINTER TO OWNER)

(Y COORDINATE)

(X COORDINATE)

(DISPLAY PARAMETER)

(SERVICE TASK ADDRESS)

(RETURN IF DISPLAY STORAGE EXCEEDED)

(RETURN IF SUCCESSFUL)

*AC CONTENT ON ENTRY;

-46-

* POINTER TO STRUCTURE FOR BUTTON DISPLAY

*AC CONTENT ON RETURN :

POINTER TO LIGHT BUTTON LEVEL *

BUTN

BUTN1

BUTN2

$DC 0

JMS* -T.L

$DC 0

DAC BUTN3

LAW -4

DAC BUTN4

LAC =BUTN1

DAC BUTN 5

LAC* BUTN+2

DAC* BUTN5

ISZ BUTN+2

ISZ BUTN5

ISZ BUTN4

JMP *-5

LAC BUTN3

JMS LVL

$DC 0

$DC 0

$DC 0

$DC 0

JMP BUTN2

DAC BUTN 3

LAC* BUTN+2

LMQ

LAC BUTN 3

JMS* =S.LL

LAC BUTN3

ISZ BUTN+2

ISZ BUTN+2

JMS* ■T.U
$DC BUTN

SET REENTRY LOCK

SAVE POINTER TO STRUCTURE

GET LVL PARAMETER COUNT

INITIALIZE COUNTER

GET ADDRESS OF FIRST LVL PARAMETER

INITIALIZE POINTER

GET BUTN PARAMETER

STORE AS LVL PARAMETER

INCREMENT BUTN PARAMETER POINTER

INCREMENT LVL PARAMETER POINTER

INCREMENT COUNTER & SKIP IF DONE

COPY NEXT PARAMETER

GET POINTER TO STRUCTURE

GENERATE INTERMEDIATE LEVEL

LOC CONTAINING POINTER TO OWNER

Y COORDINATE

X COORDINATE

DISPLAY PARAMETER

DISPLAY STORAGE EXCEEDED

SAVE POINTER TO LEVEL

GET ADDRESS OF SERVICE TASK

SET UP PARAMETER

GET POINTER TO LEVEL

SENSITIZE LEVEL TO LPSI

GET POINTER TO LEVEL

INCREMENT RETURN POINTER

INCREMENT RETURN POINTER

UNLOCK BUTN & RETURN

-47-

*CALLING SEQUENCE:

* JMS BUTX

* $DC

* $DC

* $DC

* $DC

* $DC

* $DC

*

— — K «■

*AC CONTENT ON RETURN:

* POINTER TO LIGHT

BUTX $DC 0

JMS* -T.L

$DC 0

LAC* BUTX+2

JMS* =L.D

JMP BUTX4

DAC BUTX7

LAW -6

DAC pUTX5

LAC =BUTX2

DAC BUTX6

BUTX1 ISZ BUTX+2

ISZ BUTX6

ISZ BUTX5

SKP

JMP BUTX2-1

LAC* BUTX+2

DAC* BUTX6

JMP BUTX1

LAC BUTX7

BUTX2 JMS BUTN

$DC 0

$DC 0

(ADDRESS OF TEXT LIST)

(LOC CONTAINING POINTER TO OWNER)

(Y COORDINATE)

(X COORDINATE)

(DISPLAY PARAMETER)

(SERVICE TASK ADDRESS)

(RETURN IF DISPLAY STORAGE EXCEEDED)

(RETURN IF SUCCESSFUL)

BUTTON LEVEL

SET REENTRY LOCK

GET ADDRESS OF TEXT LIST

CREATE TEXT LEAF

DISPLAY STORAGE EXCEEDED

SAVE POINTER TEXT LEAF

LOAD AC WITH -6

SET PARAMETER COUNTER

GET ADDRESS OF BUTN CALL

SET PARAMETER POINTER

ADVANCE TO NEXT PARAMETER

INCREMENT PARAMETER POINTER

SKIP IF NOT PARAMETER

MOVE PARAMETER

CALL BUTN

GET PARAMETER

STORE PARAMETER

MOVE NEXT PARAMETER

GET POINTER TO TEXT LEAF

CREATE LIGHT BUTTON

LOC CONTAINING- POINTER TO OWNER

Y COORDINATE

-48-

BUTX3

BUTX4

$DC

$DC

$DC

JMP

ISZ

JMS*

$DC

LAC

JMS*

JMP

LAC

TAD

DAC

0 X COORDINATE

0 DISPLAY PARAMETER

0 SERVICE TASK ADDRESS

BUTX3+2 DISPLAY STORAGE EXCEEDED

BUTX+2 INDICATE SUCCESS

=T.U UNLOCK BUTX & RETURN

BUTX

BUTX7 GET POINTER TO TEXT LEAF

=S.LL DESTROY TEXT LEAF

BUTX3 RETURN

BUTX+2 GET RETURN POINTER

=6 ADVANCE PAST PARAMETER LIST

BUTX+2 SET FAILURE RETURN POINTER

BUTX3 RETURN

(RETURN)

JMP

*CALLING SEQUENCE:

* JMS CHEW
*

*AC CONTENT ON ENTRY:

* POINTER TO MAXIMUM ELEMENT IN THE STRUCTURE

*TO BE CHEWED

*THE MAXIMUM ELEMENT SPECIFIED MUST OWN ALL LEVELS

♦WHICH OWN ELEMENTS OF THE STRUCTURE.
CHEW

CHEW1

$DC

JMS*

$DC

DAC

LAC

JMS*

LAC*

SNA

JMP

SAD

JMP

LAC

AND

SAD

0

■T.L
ü

CHEW6

=CHEWQ

-Q.C

CHEW6

CHEWS

=762010

CHEW4

CHEW6

=70000

=10000

SET REENTRY LOCK

SAVE POINTER TO STRUCTURE

GET ADDRESS OF WORD QUEUE

CLEAR WORD QUEUE

GET FIRST WORD FROM STRUCTURE

SKIP IF ITEM NOT ALREADY DELETED

GET NEXT ITEM FROM QUEUE

SKIP IF NOT TEXT LEAF

DESTROY TEXT LEAF

GET POINTER TO STRUCTURE

GET BREAK FIELD BITS

SKIP IF NOT LEVEL

-49-

SKP

JMP CHEWS

CHEW2 LAC CHEW6

JMS ATTR

JMP CHEW3

DAC CHEW7

LMQ

LAC CHEW6

JMS* =S.TR

$DC 0

LAC CHEW7

LMQ

LAC =CHEWQ

JMS* =Q.A

$DC 0

JMP CHEW2

CHEW3 LAC CHEW6

JMS* =S.TD

$DC 0

JMP CHEWS

CHEW4 LAC CHEW6

JMS* =L.L

CHEWS LAC =CHEWQ

JMS* =Q.F

JMP * + 3

DAC CHEW6

JMP CHEW1

JMS* =T.U

$DC CHEW

CHEWQ $DC *+200

$DC 200

♦CALLING SEQUENCE:
*

*

JMS ATTR

*

DESTROY LEVEL

GET NEXT ITEM FROM QUEUE

GET POINTER TO LEVEL

GET FIRST ATTRIBUTE FROM LEVEL

LEVEL IS EMPTY

SAVE POINTER TO ATTRIBUTE

SET UP PARAMETER

GET POINTER TO LEVEL

REMOVE ATTRIBUTE

CHEW PROGRAMMING ERROR

GET POINTER TO ATTRIBUTE

SET UP PARAMETER

GET ADDRESS OF WORD QUEUE

ADD ATTRIBUTE TO QUEUE

WORD QUEUE NOT LARGE ENOUGH

PUT NEXT ATTRIBUTE IN QUEUE

GET POINTER TO LEVEL

DESTROY LEVEL

CHEW PROGRAMMING ERROR

CHEW UP NEXT ITEM

GET POINTER TO TEXT LEAF

DESTROY TEXT LEAF

GET ADDRESS OF WORD QUEUE

GET NEXT ITEM FROM QUEUE

QUEUE EMPTY

SAVE POINTER TO ITEM

CHEW UP ITEM FROM QUEUE

UNLOCK CHEW & RETURN

(RETURN IF NO MORE ATTRIBUTES)

(RETURN IF ATTRIBUTE FOUND)

-50-

*AC CONTENTS ON ENTRY:

* ADDRESS OF LEVEL

ATTR $DC 0

TAD = 7

DAC ATTR2

LAC* ATTR2

DAC ATTR2

LAC* ATTR?

AND =777770

SAD =762010

SKP

JMP* ATTR

ISZ ATTR2

LAC* ATTR2

ISZ ATTR

JMP* ATTR

FORM POINTER TO POINTER TO NODE

SAVE POINTER TO POINTER TO NODE

GET POINTER TO NODE (OR TAIL)

SAVE POINTER TO NODE (OR TAIL)

GET FIRST WORD FROM NODE (OR TAIL)

TRUNCATE BREAK FIELD

SKIP IF NOT NODE

NODE FOUND

NO MORE ATTRIBUTES

FORM POINTER TO SECOND LOC IN NODE

GET POINTER TO ATTRIBUTE

INDICATE SUCCESS

RETURN

As an example of how these subroutines might be used,

consider a task called SELGI which allows the operator to draw

unrelated straight lines on the display with the light pen.

More specifically, when the task is begun, it allocates the

display and displays the following:

SELGI

DRAW BRASE ESCAPE

light buttons

—title
(insensitive
to light pen)

threshold
(imaginary
line)

-51-

The elements of this display are arranged in the following

structure:

highest active level

SELGI display level

draw leaf erase leaf escape leaf

The SELGI display level is set to scale x2, each light button

level is sensitized to the light pen sense indicator, and the

line level (into which all lines drawn by the operator will be

inserted) has coordinates at the center of the screen.

When the light pen is pointed at the DRAW light

button, the task DRAW is scheduled. The task DRAW then starts

tracking on the DRAW light button, and waits (through the use

of T.P) until the operator loses tracking. Then, if the Y

tracking coordinate is above the threshold line, a line of

length one point (which appears as a point on the display) is

inserted into the line level such that it appears at the coor-

dinates where tracking was lost. Otherwise, no line is gener-

ated. (The DRAW light button blinks while tracking is in

process for this operation.) Up to 64 lines may be created

in this manner.

If the light pen is now pointed at any of the unit-

length lines (points) on the screen, tracking is started, and

one end of the line is affixed to the tracking cross. The line

-52-

then may be stretched by moving the affixed end point to some

other position on the screen. If the light pen is now pointed

at any line which is longer than one point, tracking is started,

and the end poirt of the line which is closer to the tracking

cross is affixed to the tracking cross and may be moved to any

position on the screen.

If the light pen is pointed at the ERASE light button,

this light button starts blinking. If, while the ERASE light

button is blinking, the light pen is pointed at some line on

the screen, the line is removed from the line level, the stor-

age which it occupied is salvaged, and the blinking of the

ERASE light button is stopped.

If the light pen is pointed at the ESCAPE light but-

ton, the entire display structure created by SELGI is destroyed

via the subroutine CHEW. The task SELGI then releases the

display and terminates.

Lines aie represented internally in this program by

leaves which have the following format:

VEC ENTER VECTOR MODE

 Y DISPLACEMENT (NONINTENSIFIED)

 X DISPLACEMENT (NO ESCAPE)

 Y DISPLACEMENT (INTENSIFIED)

 X DISPLACEMENT (NO ESCAPE)

 Y DISPLACEMENT (NONINTENSIFIED)

 X DISPLACEMENT (ESCAPE,

POP END OF LEAF

Each leaf actually represents a triangle with two nonintensified

sides. This scheme permits the end points of the line to occur

anywhere on the screen:

first vector

thi'rd vector

second vector

•

-53-

SELGI LAW 1

JMS* =T.A

LAC =LINES

DAC DIS

LAW -1000

DAC FRM

DZM* DIS

ISZ DIS

ISZ FRM

JMF *-l

JMS* =S.LH

DAC HAL

LAC =TXT

JMS* =L.D

JMP END

DAC DIS

JMS LVL

$DC HAL

$DC 360

$DC -34

$DC 500

JMP FAIL

DAC FRM

JMS BUTX

$DC TXT1

$DC FRM

$DC -750

$DC -344

$DC 0

$DC DRAW

JMP END

JMS BUTX

$DC TXT2

$DC FRM

$DC -750

GET DISPLAY ALLOCATION MASK

ALLOCATE DISPLAY

GET ADDRESS OF LINE STORAGE AREA

SET STORAGE POINTER

LOAD AC WITH -512

SET STORAGE COUNTER

CLEAR STORAGE LOCATION

INCREMENT STORAGE POINTER

SKIP IF STORAGE AREA CLEARED

CLEAR NEXT STORAGE LOCATION

GET ADDRESS OF HIGHEST ACTIVE LEVEL

SAVE ADDRESS OF HIGHEST ACTIVE LEVEL

GET ADDRESS OF TITLE TEXT LIST

CREATE TEXT LEAF

DISPLAY STORAGE EXCEEDED

SAVE POINTER TO TITLE LEAF

GENERATE SELGI DISPLAY LEVEL

POINTER TO HIGHEST ACTIVE LEVEL

Y COORDINATE

X COORDINATE

SCALE X2

DISPLAY STORAGE EXCEEDED

SAVE POINTER TO SELGI DISPLAY LEVEL

GENERATE DRAW LIGHT BUTTON

DRAW TEXT LIST

POINTER TO SELGI DISPLAY LEVEL

Y COORDINATE

X COORDINATE

NULL DISPLAY PARAMETER

DRAW SERVICE TASK

DISPLAY STORAGE EXCEEDED

GENERATE ERASE LIGHT BUTTON

ERASE TEXT LIST

POINTER TO SELGI DISPLAY LEVEL

Y COORDINATE

$DC 10

$DC 0

$DC ERASE

JMP END

JMS BUTX

$DC T::T3

$DC FRM

$DC -750

$DC 35.-

$DC 0

$DC ESCAPE

JMP END

JMS* «S.TL

JMP END

DAC DIG

LMQ

LAC FRM

JMS* ■S.TI

JMP FA II

LAW 6)

LMQ

LAC r is

JMS* -CLP

LAW -360

LMQ

LAC DIE

JMS* -S.LY

LAC = 34

LMQ

LAC DIG

JMS* =S.]X

LAC »MOVE

JMS* =D.P

JITS* ■D.E

DZM F^c; PE+l

-54-

X COORDINATE

NULL DISPLAY PARAMETER

ERASE SERVICE TASK

DISPLAY STORAGE EXCEEDED

GENERATE ESCAPE LIG^T BUTTON

ESCAPE TEXT LIST

POINTER TO SELGI DISPLAY LEVEL

Y COORDINATE

X COORDINATE

NULL DISPLAY PARAMETER

ESCAPE SERVICE TASK

DISPLAY STORAGE EXCEEDED

CREATE LINE LEVEL

DISPLAY STORAGE EXCEEDED

SAVE POINTER TO LINE LEVEL

SET UP PARAMETER

GET POINTER TO SELGI DISPLAY LEVEL

INSERT LINE LEVEL

DISPLAY STORAGE EXCEEDED

GET LIGHT PEN ON PARAMETER

SET UP PARAMETER

GET POINTER TO LINE LEVEL

ENABLE LIGHT PEN ON LINE LEVEL

GET Y COORDINATE

SET UP PARAMETER

GET POINTER TO LINE LEVEL

SET Y COORDINATE OF LINE LEVEL

GET X COORDINATE

SET UP PARAMETER

GET POINTER TO LINE LEVEL

SET X COORDINATE OF LINE LEVEL

GET ADDRESS OF LINE MOVING TASK

SET LIGHT PEN FLAG SERVICE

ENABLE DISPLAY INTERRUPTS

CLEAR ESCAPE SWITCH

-55-

FAXL

END

DRAW

LAC ESCAPE

SZA

JMP END

SKP

JMP *-4

JMS* =T.P

LAC DIS

JMS CHEW

LAC HAL

JMS CHEW

CLA

JMS* =D.P

LAW 1

JMS* =T.R

JMA* -T.F

LAW -720

LMQ

LAW -730

JMS* =X.I

CLA

JMS* =D.O

$DC 0

JMS* =S.LBE

JMS* =X.S

JMS* -T.P

JMS* =X.Y

TAD = 700

SPA

JMP DRAW1

LAC =LINES

DAC FRM

LAW -100

DAC CNT

LAC* FRM

SNA

GET ESCAPE SWITCH

SKIP IF ESCAPE NOT PENDING

TERMINATE SELGI

PREPARE TO SCHEDULE NEXT LOCATION

CHECK ESCAPE SWITCH

SCHEDULE PREVIOUS LOCATION

GET POINTER TO NONACTIVE STRUCTURE

DESTROY NONACTIVE STRUCTURE

GET POINTER TO HIGHEST ACTIVE LEVEL

DESTROY ACTIVE STRUCTURE

GET NULL LIGHT PEN FLAG SERVICE

SET NULL LIGHT PEN SERVICE

GET DISPLAY ALLOCATION MASK

RELEASE DISPLAY

TERMINATE

GET INITIAL X TRACKING COORDINATE

SET UP PARAMETER

GET INITIAL Y TRACKING COORDINATE

INITIALIZE TRACKING

PREPARE TO READ OWNER 0 LEVELS BACK

READ ADDRESS OF DRAW LEVEL

PROGRAMMING ERROR IF D.O FAILS

ENABLE BLINK ON DRAW LIGHT BUTTON

SKIP IF TRACKING HAS BEEN LOST

CHECK TRACKING AGAIN

READ Y TRACKING COORDINATE

FORM THRESHOLD CHECK

SKIP IF LINE IS TO BE CREATED

IGNORE ATTEMPT TO CREATE LINE

GET POINTER TO LINE STORAGE

SET STORAGE POINTER

GET MAXIMUM LINE COUNT

SET LINE COUNTER

GET FIRST WORD OF LINE BLOCK

SKIP IF LINE BLOCK IN USE

-56-

DRAW1

MOVE

JMP *+7

LAC FRM

TAD = 10

DAC FRM

ISZ CNT

JMP *-7

JMP DRAWl

I AW 1121

DAC* FRM

LAC FRM

TAD = 7

DAC CNT

LAW 3000

DAC* CNT

LAC FRM

JMS FIXBGN

LAC FRM

JMS FIXEND

LAC FRM

LMQ

LAC DIS

JMS* =S.TI

NOP

CLA

JMS* =D.O

$DC 0

JMS* =S.LBD

JMS* -D.E

JMS* ■T.F
JMS* =D.Y

DAC MOVEY

JMS* =D.X

LMQ

LAC MOVEY

JMS* = X.I

LINE BLOCK IS AVAILABLE

GET STORAGE POINTER

FORM ADDRESS OF NEXT LINE BLOCK

SET STORAGE POINTER TO NEXT BLOCK

SKIP IF NO MORE LINE STORAGE

CHECK AVAILABILITY OF LINE BLOCK

IGNORE ATTEMPT TO CREATE LINE

GET VEC INSTRUCTION

STORE IN FIRST LOCATION OF LINE BLOCK

GET POINTER TO LINE BLOCK

FORM POINTEN TO LAST WORD 'N BLOCK

SAVE POINTER TO LAST WORD IN BLOCK

GET POP INSTRUCTION

STORE IN LAST WORD IN BLOCK

GET POINTER TO LINE BLOCK

SET 1ST END POINT TO TRACKING COORD

GET POINTER TO LINE BLOCK

SET 2ND END POINT TO TRACKING COORD

GET POINTER TO LINE BLOCK

SET UP PARAMETER

GET POINTER TO LINE LEVEL

INSERT LINE BLOCK

DISPLAY STORAGE EXCEEDED

PREPARE TO READ OWNER 0 LEVELS BACK

READ ADDRESS OF DRAW LEVEL

PROGRAMMING ERROR IF D.O FAILS

STOP BLINK OF DRAW LIGHT BUTTON

ENABLE DISPLAY INTERRUPTS

TERMINATE

READ Y DISPLAY COORDINATE

SAVE Y DISPLAY COORDINATE

READ X DISPLAY COORDINATE

SET UP PARAMETER

GET Y DISPLAY COORDINATE

INITIALIZE TRACKING

-57-

WATCH

CLA

JMS* =D.O

$DC 0

DAC MOVE1

DAC MOVE 2

ISZ MOVE 2

TAD = 5

DAC MOVE 3

LAC* MOVE 2

XOR = 2000

JMS* -C.CB

LLSS 1

TAD MOVEY

GSM

DAC MOVE 4

LAC* MOVE 3

JMS* =C.CB

LLSS 1

TAD MOVEY

GSM

CMA

TAD MOVE 4

SMA

JMP *+3

JMS WATCH

JMS FIXBGN

JMS WATCH

JMS FIXEND

$DC 0

LAC MOVE1

XCT* WATCH

JMS* =X.S

JMP *+6

LAW -40

JMS* -N.C

PREPARE TO READ OWNER 0 LEVELS BACK

READ ADDRESS OF LINE LEAF

PROGRAMMING ERROR IF D.O FAILS

SAVE POINTER TO LINE LEAF

SAVE COtY OF POINTER TO LINE LEAF

FORM POINTER TO FIRST Y DISPLACEMENT

FORM POINTER TO THIRD Y DISPLACEMENT

SAVE POINTER TO THIRD Y DISPLACEMENT

GET FIRST Y DISPLACEMENT

INVERT SIGN BIT

CONVERT TO TWO'S COMPLEMENT

MULTIPLY BY 2

ADD Y DISPLAY COORDINATE

FORM ABSOLUTE VALUE

SAVE FOR LATER COMPARISON

GET THIRD Y DISPLACEMENT

CONVERT TC TWO'S COMPLEMENT

MULTIPLY BY 2

ADD Y DISPLAY COORDINATE

FORM ABSOLUTE VALUE

FORM NEGATIVE OF ABSOLUTE VALUE

ADD DISPLACEMENT FROM OTHER END

SKIP IF CLOSER TO FIRST Y DISPLACEMENT

CLOSER TO SECOND Y DISPLACEMENT

ENTER UPDATING TASK

PARAMETER FOR UPDATING TASK

ENTER UPDATING TASK

PARAMETER FOR UPDATING TASK

GET POINTER TO LINE LEAF

UPDATE AFFIXED END POINT

SKIP IF TRACKING NOT IN PROCESS

SCHEDULE NEXT UPDATING

LOAD AC WITH -32

WAIT ABOUT HALF A SECOND

-58-

JMS* -D.E

JMS* =T.F

JMP WATCH+1

JMS* ^T.P

ERASE LAC =DELETE

JMS* =D.P

CLA

JMS* =0.0

$DC 0

DAC ERS

JMS* -S.LBE

JMS* = D.E

JMS* --T.F

DELETE LAC ERS

JMS* =S.LBD

CLA

JMS* =D.O

$DC 0

DAC FRM

LMQ

LAC DIS

JMS* = S.TR

$DC ü

DZM* FRM

LAC =M0VE

JMS* =D.P

LAW -40

JMS* -N.C

JMS* =D.E

JMS* ■T.F
ESCAPE JMS * + l

$DC 0

JMS* «T.F

FIXBGN $DC 0

JMS FIXRD

ENABLE DISPLAY INTERRUPTS

TERMINATE

UPDATE END POINT

SCHEDULE PREVIOUS LOCATION

GET ADDRESS OF LINE DELETE TASK

SET LIGHT PEN FLAG SERVICE

PREPARE TO READ OWNER 0 LEVELS BACK

GET POINTER TO ERASE LEVEL

PROGRAMMING ERROR IF D.O FAILS

SAVE POINTER TO ERASE LEVEL

START BLINKING ERASE LIGHT BUTTON

ENABLE DISPLAY INTERRUPTS

TERMINATE

GET POINTER TO ERASE LEVEL

STOP BLINKING ERASE LIGHT BUTTON

PREPARE TO READ OWNER 0 LEVELS BACK

GET POINTER TO LINE LEAF

PROGRAMMING ERROR IF D.O FAILS

SAVE POINTER TO LINE LEAF

SET UP PARAMETER

GET POINTER TO LINE LEVEL

REMOVE LINE LEAF

PROGRAMMING ERROR IF S.TR FAILS

DESTROY LINE LEAF

GET ADDRESS OF LINE MOVING TASK

SET LIGHT PEN SERVICE

LOAD AC WITH -32

WAIT ABOUT HALF A SECOND

ENABLE DISPLAY INTERRUPTS

TERMINATE

SET ESCAPE SWITCH

ESCAPE SWITCH

TERMINATE

SET UP POINTERS FOR FIXING LEAF

-59-

LAC PIXY

DAC* FIX1

LAC F1XX

DAC* FIX2

JMS FIXFIX

JMP* FIXBGN

FIXEND $DC 0

JMS FIXRD

LAC PIXY

XOR = 2000

DAC* F1X5

LAC PIXX

XOR = 6000

DAC* PIX6

JMS FIXFIX

JMP* FIXEND

FIXRD $DC 0

TAD = 1

DAC FIX1

TAD = 1

DAC PIX2

TAD = 1

DAC PIX3

TAD = 1

DAC PIX4

TAD = 1

DAC PIX5

TAD = 1

DAC . PIX6

JMS* =X.Y

LRSS 1

JMS* =C.BC

DAC PIXY

JMS* =X.X

LRSS 1

GET Y TRACKING COORDINATE

SET FIRST Y DISPLACEMENT

GET X TRACKING COORDINATE

SET FIRST X DISPLACEMENT

CORRECT INTENSIFIED VECTOR

RETURN

SET UP POINTERS FOR FIXING LEAF

GET Y TRACKING COORDINATE

INVERT SIGN BIT

SET THIRD Y DISPLACEMENT

GET X TRACKING COORDINATE

INVERT SIGN BIT, SET ESCAPE BIT

SET THIRD X DISPLACEMENT

CORRECT INTENSIFIED VECTOR

RETURN

FORM POINTER TO FIRST Y DISPLACEMENT

SAVE

FORM POINTER TO FIRST X DISPLACEMENT

SAVE

FORM POINTER TO SECOND Y DISPLACEMENT

SAVE

FORM POINTER TO SECOND X DISPLACEMENT

SAVE

FORM POINTER TO THIRD Y DISPLACEMENT

SAVE

FORM POINTER TO THIRD X DISPLACEMENT

SAVE

READ Y TRACKING COORDINATE

DIVIDE BY 2

CONVERT TO DISPLAY COORDINATE

SAVE

READ X TRACKING COORDINATE

DIVIDE BY 2

-6 0-

JMS* =G.BG

DAC FIXX

JMP* FIXRD

FIXFIX $DC 0

LAG* FIX1

JMS* =G.GB

DAC FIXY

LAG* FIX5

JMS* =G.GB

TAD FIXY

JMS* =G.BG

SZA

JMP *+7

LAG* FIX5

JMS* =G.GB

TAD = 1

JMS* =G.BG

DAG* FIX5

LAW 1

XOR = 6000

DAG* FIX3

LAG* FIX2

JMS* =G.GB

DAG FIXX

LAG* FIX6

JMS* =G.GB

TAD FIXX

JMS* =G.BG

XOR = 2000

DAG* FIX4

JMP* FIXFIX

TXT $DG 2

$TEXT "SELGI"

TXTl $DG 2

$TEXT "DRAW"

GONVERT TO DISPLAY GOORDINATE

SAVE

RETURN

GET FIRST Y DISPLAGEMENT

GONVERT TO TWOS GOMPLEMENT

SAVE

GET THIRD Y DISPLAGEMENT

CONVERT TO TWOS GOMPLEMENT

ADD FIRST Y DISPLAGEMENT

GONVERT TO DISPLAY GOORDINATE

SKIP IF Y DISPLAGEMENTS WERE EQUAL

GONVERTED VALUE IS NONZERO

GET THIRD Y DISPLAGEMENT

GONVERT TO TWOS GOMPLEMENT

MAKE DIFFERENT FROM 1ST Y DISPLAGEMENT

GONVERT TO DISPLAY GOORDINATE

STORE MODIFIED THIRD Y DISPLAGEMENT

GET DISPLAGEMENT OF 1

SET ESGAPE BIT, INVERT SIGN BIT

STORE SEGOND Y DISPLAGEMENT

GET FIRST X DISPLAGEMENT

GONVERT TO TWOS GOMPLEMENT

SAVE

GET THIRD X DISPLAGEMENT

GONVERT TO TWOS GOMPLEMENT

ADD FIRST X DISPLAGEMENT

GONVERT TO DISPLAY GOORDINATE

INVERT SIGN BIT

SET SEGOND X DISPLAGEMENT

RETURN

-61-

TXT2 $DC 2

$TEXT "ERASE"

TXT 3 $DC 2

$TEXT "ESCAPE"

LINES $DS

$END

1000

3.11 Text List Manipulation

A structure which may be used to represent efficiently

strings of text in core is called a "text list." A text list

consists of a word which contains a number m which represents

the length of the list, followed by m words, each of which

contains three 6-bit characters. As an example, a text list

which represents the string

A SIMPLE EXAMPLE

is the following (in octal form):

000006

127634

222631

251676

164112

263125

167777

This text list may easily be represented in assembly language

via the TEXT pseudo-op:

LIST $DC 6

$TEXT "A SIMPLE EXAMPLE"

The address of the text list is the address of its first word.

In this example, LIST is a symbol whose value is the address

of the text list.

A "text leaf" is a representation of a text list as

a display leaf. The leaf is composed of a series of push jumps

to various character generation subroutines within the System.

-62-

A carriage return, however, is represented explicitly in the

text leaf by three words vhich generate a vector which restores

the X coordinate to its value just before the display control

enters the text leaf. An additional vector is included at the

end of the text leaf to restore both ^he X and Y coordinates.

The high-order six bits of the second word of each push jump

contain the 6-bit code for the character which the push jump

represents. Each character is drawn in increment mode and is

7 points high by 5 points wide. The trailing space, which is

produced by each character generation subroutine, is 3 points

wide.

As an example of a text leaf, consider the following

text list:

LEAF $DC 10

$TEXT "EXAMPLE OF"

$DC 747577

$TEXT "2 LINES"

The text leaf which would be produced from this text list is

the following:

762010
16
762010
41
762010
12
762010
26
762010
31
762010
25
762010
16
762010
76
762010
30
762010
17
761121
400000
006120

-63-

762010
75
762010
02
762010
76
762010
25
762010
22
762010
27
762010
16
762010
34
761121
400020
00o070
76.3000

The following system subroutines have been defined

for manipulating text lists and text leaves:

L.T - The text list whose address is given in bits

3-17 of the AC is typed on the teletype.

L.D*- A text leaf is generated from the text list

whose address is given in bits 3-17 of the AC.

The address of the generated text leaf is re-

turned in bits 3-17 of the AC. A failure re-

turn is made if the text leaf cannot be gener-

ated because of insufficient free display

storage.

L.L - The text leaf whose address is given in bits

3-17 of the AC is destroyed, and the storage

which it occupied is salvaged by the System.

4. IDLE-TIME TASK

The idle-time task, which is executed whenever the

System is in system state (Section 2.3), interprets various

keyboard commands which provide some functions which are useful

for testing and modifying user tasks. These commands are des-

cribed in Sections 4.1 through 4.5. Each command is given by

typing only the underlined characters; the System will type all

other characters shown.

4.1 Copy Functions

The command

TELETYPE

FROM /.EAPER TAPE

SORE

r ^
TELETYPE

TO

v;

PAPER TAPE

QORE

£1SPLAY .

\

allows the operator to transfer data from teletype, paper tape,

or core to teletype, paper tape, core, or the display. Many

of these copy functions normally are specified by other names.

For example, a copy from paper tape to core is called loading,

a copy from core to teletype or from core to display is called

a dump, a copy from teletype to core is called altering, etc.

When a transfer from teletype to any device other

than core is specified, everything typed on the teletype up to

the next character which maps into a 6-bit null character (Sec-

tion 3.3) is transferred to the device specified. After a null

character is typed, the i^le-time task is ready for a new

command. When copying from teletype to core, the following

sequence of events occurs:

(1) The operator types a 5-digit octal address on tiie

keyboard. If one character which he types is not an octal

digit, it is interpreted as the first character of a new com-

mand, and the copy from teletype to core is terminated.

-64-

-65-

(2) The idle-time task types the content of the loca-

tion specified on the current line of text.

(3) The operator types a 6-digit octal content to

replace the content of the location specified on the current

line of text. If he types a carriage return in place of one

of the octal digits, the content of the location is left un-

changed. If he types a character which is neither an octal

digit nor a carriage return, the copy task proceeds with Step 1.

(4) The address of the location which immediately

follows the one which was just examined (and perhaps modified)

is typed. The copy task then proceeds with Step 2.

As an example of a copy from teletype to core, con-

sider setting the content of location 23571R to 547521» and

of location 23574g to 607213g. This may be accom- the content

plished by either of the following procedures:

FROM TELETYPE TO CORE

23571 172356 547521

23572 543125 (carriage return)

23573 601241 (carriage return)

23574 760001 607213

23575 127123 (rubout)

FROM (new command)

FROM TELETYPE TO CORE

23571 172356

23572 543125

23574 760001

23575 127123

FROM

547521

607213

(rubout)

(rubout)

(new command)

When a copy from paper tape to any device other than

core is specified, the next alphanumeric record (Section 3.4.2)

is read, and all binary records which are encountered before it

-66-

are ignored. (However, if the alphanumeric record is too long

for the display, and a copy from paper tape to display is speci-

fied, only part of the alphanumeric record is read. The next

part of the record may be displayed by another copy from paper

tape to display.J Similarly, whenever a copy from paper tape

to core is specified, the next binary record is read, and all

alphanumeric records which are encountered before it are ignored.

When a copy from core to any device is specified, the

specification of a block of core locations is requested from

the operator. For example, the operator may dump locations

235718 through 23602- on the teletype as follows:

FROM CORE TO TELETYPE

BLOCK (23571, 23602)

23571 172356 543125 601241 760001 127123 127124 000200 000001

23601 000236 777777

A copy from core to core will also request the address of the

first location in the block into which the information is to be

moved. For example, locations 20052g through 20056g may be

moved into locations 21521g through 21525g by the following

command:

FROM CORE TO CORE

BLOCK (20052, 20056) TO 21521

Since the words in a block to be moved by a copy from core to

core are moved one at a time, starting with the lowest address

of the specified block, the following sequence of commands may

be used to store zeros in all of core bank 1. (This is some-

times a useful operation to perform before loading a program

to be debugged, since it stores illegal instructions througout

core bank 1.)

FROM TELETYPE TO CORE

20000 172132 000000

20001 172312 (rubout)

-67-

FROM CORE TO CORE

BLOCK (20000, 37776) TO 20001

The copy from core to core in this example moves the zero from

location 20000g into location 20001g, then it moves the zero

from location 20001g into location 20002g, etc.

Copy functions to the display are constrained to a

maximum of 64 characters per line and to 10 lines. For this

reason, a maximum of 100g locations may be dumped on the screen

at one time, ard a copy from paper tape or teletype to display

will be terminated c- the end of 10 lines.

4.2 Scheduling of User Tasks

User tasks may be scheduled while in system state,

but they will not be executed until user state is entered (Sec-

tion 4.5). The command which accomplishes this is the following:

SCHEDULE

In the blanks after the word "schedule" the operator should type

a 5-digit octal address where the task which he is scheduling

begins. For example, a user task which starts at location

20571g may be scheduled by the following command:

SCHEDULE 20571

4.3 Clearing the Task Queue or Display Storage

The command

CLEAR f TASK QUEUE

^DISPLAY STORAGE

allows the operator to remove all user tasks scheduled by the

command described in Section 4.2 from the task queue, or to

clear the display storage area. When a copy function to the

display is performed, the comment

NOT ENOUGH DISPLAY STORAGE

-68-

may be printed on the teletype, and the copy function will not

be completed. The facility of clearing the display storage

area is provided to allow the operator to destroy all display

structures to provide display storage for copy functions to

the display.

4.4 Teletype tc Dataphone Transmission

Since most messages to be sent over the 201A data-

phone to a remote computer from the teletype are record-oriented,

rather than character-oriented, and since ASCII codes are ac-

cepted as standards for this type of communication, a copy from

the teletype to the dataphone is handled in a different manner

from other copy functions. If the command "#" is typed, all

succeeding characters typed on the keyboard, up to the first

carriage return, are sent over the dataphone as one record of

ASCII characters. (Of course, any response to such a record

which does not begin with the 8-bit character 000« will be typed

by the 201-to-teleprinter task.) However, a rubout will delete

a partially typed line, and the character "••-" will delete the

previous character on the line,if it exists. This command is

terminated when the line is terminated or deleted. A record

consisting of an enquiry (used as an end-of-record character)

may be sent from the teletype by striking the "WRU" key when

the idle-time task is expecting a new command.

4.5 Entering User State

The command

RUN

causes all user tasks which have been scheduled by the command

described in Section 4.2 to become eligible for execution, and

the idle-time task to be terminated. This causes the System

to enter user state (Section 2.3).

5. SYSTEM CAPABILITY

The System was designed primarily to support user

tasks which provide communication between the operator and the

3 39 via network diagrams and between the 339 and a large time-

sharing system. As can be determined by examination of the dis-

play structure, the display support provided by the System is

easily applied to almost any display-oriented task which is two-

dimensional in nature (e.g., network diagrams, two-dimensional

Sketchpad programs, line-oriented text editing, etc.). The

System offers no support for tasks which involve three-dimen-

sional projection in that: (1) floating point arithmetic (which

is almost essential for this type of task) is not provided, and

(2) the display structure has no provision for storing the extra

information required for three-dimensional projection.

Because a timesharing system is not always available

to support preparation and testing of remote terminal programs,

the philosophy behind the design of the system was to consider

the remote terminal as an independent unit which considers the

large timesharing system to be an I/O device. This differs

from the philosophy, which is commonly applied to the design

of remote terminal software systems, that the large timesharing

system must be available to support the remote terminal system

whenever the remote system is operating.

-69-

BIBLIOGRAPHY

339 Programmed Buffered Display, DEC-09-I6FA-D, Digital
Equipment Corporation, Maynard, Massachusetts, May 1968.

Mills, David L., I/O Extensions to RAMP, Memorandum ll,Concomp
Project, University of Michigan, Ann Arbor, October 1967.

Mills, David L., RAMP: A PDP-S Multiprogramming System
for Real-Time Device Control, Memorandum, Concomp Project,
University of Michigan, Ann Arbor, May 1967.

Mills, David L., The Data Concentrator, Technical Report
No. 8, Concomp Project, University of Michigan, Ann Arbor,
May 1968.

PDP-9 User Handbook, F-95, Digital Equipment Corporation,
Maynard, Massachusetts, January 1968.

Wood, David E., A 201A Data Communication Adapter for the
PDP-8; Preliminary Engineering Design Report, Memorandum
15, Concomp Project, University of Michigan, Ann Arbor,
February 1968.

-70-

APPENDIX A -- LISTING OF THE EXECUTIVE SYSTEM

SORG 17732
STITLE

IOT SOPDM 700000
HLT SOPD 740040

IOT 3302
JMP SYSTEM

• 1 JMS .4
SNA
JMP ♦-2
DAC .5
AND .7
SAD .8
SKP
JMP .2
JMS .3
DAC .6
JMP .1

.2 JMS .3
DAC* .6
ISZ .6
JMP .1

.3 SDC 0
JMS *4
LRS 6
LAC .5
LLS 6
DAC .5
JMS .4
LRS 6
LAC .5
LLS 6
JMP* .3

»A SDC 0
IOT 104
IOT 101

SEL EXECUTIVE SYSTEM LOADER

CLEAR ALL FLAGS
START SYSTEM
READ FIRST LINE OF 3-LINE BLOCK
SKIP IF NONBLANK TAPE
BLANK TAPE -- TF'Y AGAIN
SAVE FIRST LINE IMAGE
REMOVE DATA BITS
SKIP IF DATA LINE
ORIGIN LINE
DATA LINE
FINISH ORIGIN WORD
SET LOCATION COUNTER
READ NEXT BLOCK
FINISH DATA WORD
LOAD DATA WORD
INCREMENT LOCATION COUNTER
READ NEXT BLOCK

READ SECOND LINE
SHIFT DATA BITS INTO MO
LOAD AC WITH FIRST LINE IMAGE
SHIFT CONCATENATED IMAGE INTO AC
SAVE CONCATENATED FIRST TWO LINES
READ THIRD LINE
SHIFT DATA BITS INTO MO
LOAD AC WITH CONCATENATED IMAGE
SHIFT COMPLETED WORD INTO AC
RETURN

SELECT READER
SKIP IF LINE READY

A-l

A-2

JMP ♦-!
IOT tie
JMP* .4

.5 SDC 0

.6 SDC 0

.7 SDC 300
• 8 SDC 100

WAIT FOR FLAG
OVERRIDDEN "JMP
RETURN

1-2" WHEN LOADED

JMP .1 OVERRIDES BOOTSTK ,3 LOCATION 0

A-3

«TITLE

SORG 1
JMP I

SORG 21
JMP ET
JMP ES

SORG 10
o.c SDC 0

JMP OC
O.A SDC 0

JMP QA
O.I SDC 0

JMP QI
O.F SDC 0

JMP OF
T.S SDC 0

JMP TS
T.P SDC 0

JMP TP
T.F SDC 0

JMP TF
T.A SDC 0

JMP TA
T.R SDC 0

JMP TR
T.L SDC 0

JMP TL
T.U SDC 0

JMP TU
C.B6 SDC 0

JMP CB6
C.6A SDC 0

JMP C6A
C.A6 SDC 0

JMP CA6
C.CB SDC 0

JMP CCB

CONTROL DISPATCHER

INTERRUPT TRAP

ILLEGAL INSTRUCTION TRAP
SYSTEM RESTART

CLEAR QUEUE

ADD WORD TO BOTTOM OF QUEUE (F)

INSERT WORD ON TOP OF QUEUE (F)

FETCH WORD FROM TOP OF QUEUE <F)

SCHEDULE TASK

SCHEDULE PREVIOUS LOC < TERMINATE

TERMINATE CURRENT TASK

ALLOCATE I/O DEVICES UNDER MASK

RELEASE I/O DEVICES LNDER MASK

LOCK REENTRABLE SUBROUTINE

UNLOCK REENTRABLE SUBROUTINE

CONVERT BINARY TO 6-BIT OCTAL

CONVERT 6-BIT TO ASCII

CONVERT ASCII TO 6-BIT

CONVERT DISPLAY COORDINATE TO BINARY

'

A-4

C.BC SOC 0
JMP CBC

B.FI SDC 0
JMP BFI

B.FO SDC 0
JMP BFO

B.R SDC 0
JMP BR

B.P SDC 0
JMP BP

B.K SDC 0
JMP BK

8.T SDC 0
JMP BT

N.A SDC 8
JMP NA

N.C SDC 0
JMP NC

N.D1 SDC 0
JMP ND1

N.D2 SDC 0
JMP ND2

N.D3 SDC 0
JMP ND3

P.T SDC 0
JMP PT

P.E SDC 0
JMP PE

P.D SDC 0
JMP PD

P.R SDC 0
JMP PR

P.S SDC 0
JMP PS

D.E SDC 0
JMP OE

D.D SDC 0
JMP DD

D.P SDC 0
JMP DP

CONVERT BINARY TO DISPLAY COORDINATE

GET IMAGE FROM 201 INPUT BUFFER (F>

SEND IMAGE TO 201 OUTPUT BUFFER (F)

GET IMAGE FROM READER BUFFER (F)

SEND IMAGE TO PUNCH BUFFER (F>

GET 6-BIT CHAR FROM KEYBOARD BUFFER

SEND 3 PACKED 6-BIT CHARS TO TP BUF

CONVERT ANALOG TO DIGITAL

.'SET CLOCK INTERVAL i SERVICE TASK

SELECT D/A CONVERTER #1

SELECT D/A CONVERiER §2

SELECT D/A CONVERTER #3

SET PUSH BUTTON SERVICE TASK

ENABLE MANUAL OPN OF PUSH BUTTONS

DISABLE MANUAL OPN OF PUSH BUTTONS

READ PUSH BUTTONS

SET PUSH BUTTONS

ENABLE DISPLAY INTERRUPTS

DISABLE DISPLAY INTERRUPTS

SET LIGHT PEN FLAG SERVICE TASK

A-5

D.A

D.Y

D.X

0.0

X.I

X.R

X.T

X.S

X.Y

X.X

S.TL

S.TD

S.TI

S.TR

S.LH

S.LY

S.LX

S.LP

S.LBE

S.LBO

SDC 0
JMP OA
SDC 0
JMP OY
SDC 0
JMP OX
SDC 0
JMP DO
^DC 0
JMP XI
SDC 0
JMP XR
SDC 0
JMP XT
SDC 0
JMP XS
SDC 0
JMP XY
SDC 0
JMP XX
SDC 0
JMP STL
SDC 0
JMP STD
SDC 0
JMP STI
SDC 0
JMP STR
SDC 0
JMP SLH
SDC 0
JMP SLY
SDC 0
JMP SLX
SDC 0
JMP SLP
SDC 0
JMP SLBE
SDC 0
JMP SLBO

READ DISPLAY ADR ON LAST INTERRUPT

READ Y DPY COORD ON LAST INTERRUPT

READ X DPY COORD ON LAST INTERRUPT

READ OWNER ON LAST INTERRUPT <F>

INITIALIZE TRACKING AT GIVEN COORDS

RESUME TRACKING

TERMINATE TRACKING

SKIP IF TRACKING NOT IN PROCESS (F)

READ Y TRACKING COORDINATE

READ X TRACKING COORDINATE

CREATE A LEVEL CF>

DESTROY A LEVEL (F)

INSERT SUBSTRUCTURE INTO LEVEL (F>

REMOVE SUBSTRUCTURE FROM LEVEL CF)

GET ADDRESS OF HIGHEST ACTIVE LEVEL

TRANSLATE LEVEL IN Y DIRECTION

TRANSLATE LEVEL IN X DIRECTION

SET LEVEL PARAMETERS

ENABLE BLINK ON LEVEL

DISABLE BLINK ON LEVEL

A-6

Sr C SDC e
JMP SLC

S.LU SDC 0
JMP SLU

S.LS SDC 0
JMP SLS

S.LL SDC 0
JMP SLL

S.LN SDC 0
JMP SLN

L.T SDC 0
JMP LT

L.O SDC 0
JMP LD

L.L SDC 0
JMP LL

PDPI SOS 204

PDP2 SDS 204

COUNT SCALE AND/OR INTENSITY

INTERRUPT UNCONDITIONALLY ON LEVEL

INTERRUPT ON LEVEL IF ON SCREEN

INTERRUPT ON LEVEL IF LPSI SET

DISABLE INTERRUPT ON LEVEL

SEND TEXT LIST TO TP BUFFER

GENERATE TEXT LEAF (F)

DESTROY TEXT LEAF

A-7

$TITLE DISPLAY CHARACTER GENERATOR

000

001

002

003

INCR
SDC 1272
SDC 6251
SOC 6057
SOC 7516
SOC 1570
SOC 5172
SOC 3726
SOC 0
POP
INCR
SDC 5160
SDC 1472
SOC 7255
SOC 3737
SOC 0
POP
INCR
SOC 5271
SOC 5152
SDC 5364
SDC 5537
SOC 2774
SDC 5417
SDC 3020
SDC 0
POP
INCH i
SDC 1252
SDC 5760
SDC 5152
SOC 5354
SOC 1051
SOC 5253
SDC 6455
SOC 3737
SDC 1000
POP

A-8

D04 INCR
SDC 1110
SDC 5072
$DC 7875
SDC 6010
SDC 5037
SDC 1600
POP

D0S INCR
SDC 1252
SDC 5760
SDC 5162
SDC 5374
SDC 6270
SDC 5037
SDC 3616
SDC 0
POP

D06 INCR
SDC 1252
SDC 5760
SDC 5152
SDC 5364
SDC 5572
SDC 5170
SDC 3736
SDC 1600
POP

D07 INCR
SDC 5271
SDC 5162
SDC 7454
SDC 5637
SDC 3710
SDC 0
POP

D10 INCR
SDC 1252
SDC 5760
SDC 5152

A-9

SDC 5364
SDC 5512
SDC 6251
SDC 6057
SDC 5637
SDC 2600
POP

Dll INCR
SDC 5270
SDC 5162
SDC 7453
SDC 5251
SDC 6057
SDC 5637
SDC 2600
POP

D12 INCR
SDC 7272
SDC 5160
SDC 5766
SDC 7632
SDC 7437
SDC 1720
SDC 0
POP

D13 INCR
SDC 7272
SDC 5270
SDC 5756
SDC 5564
SDC 2057
SDC 5655
SDC 6430
SDC 1720
SDC 0
POP

D14 INCR
SDC 1272
SDC 6251
SDC 6057

A-10

015

D16

DI 7

029

SDC 3656
SDC 5564
SDC 3020
SDC 1700
POP
INCR
SDC 7270
SDC 5L60
SDC 6766
SDC 6554
SDC 3020
SDC 1700
POP
INCR
SDC 7272
SDC 5270
SDC 5025
SDC 5550
SDC 2516
SDC V050
SDC 1720
SDC 0
POP
INCR
SDC 7272
SDC 5270
SDC 5025
SDC 5550
SDC 3717
SDC 1000
POP
INCR
SDC 1272
SDC 6251
SDC 6057
SDC 3570
SDC 5655
SDC 6430
SDC 1720
SDC 0

A-ll

POP
D21 INCR

$DC 7272
SDC 5236
SDC 7050
SDC 7236
SDC 7620
SDC 1700
POP

D22 INCR
SDC 5160
SDC 1472
SDC 7254
SDC 1050
SDC 3736
SDC 1700
POP

D23 INCR
SDC 2252
SDC 5657
SDC 6051
SDC 7262
SDC 3636
SDC 1720
SDC 0
POP

024 INCR
SDC 7272
SDC 5230
SDC 5075
SDC 7720
SDC 1700
POP

D25 INCR
SDC 7272
SDC 5236
SDC 3670
SDC 5020
SDC 1700
POP

A-12

D26 INCR
SDC 7272
SDC 5267
SDC 6176
SDC 7620
SDC 1700
POP

D27 INCR
SDC 7272
SDC 5277
SDC 3250
SDC 7676
SDC 1720
SDC 0
POP

030 INCR
SDC 1272
SDC 6251
SDC 6057
SDC 7656
SDC 5564
SDC 3020
SDC 1700
POP

031 INCR
SDC 7272
SDC 5270
SDC 5756
SDC 5564
SDC 3720
SDC 1700
POP

032 INCR
SDC 1272
SDC 6251
SDC 6057
SDC 7656
SDC 5564
SOC 1022
SDC 7720

A-13

SDC 0
POP

D33 JNCR
$DC 7272
SDC 5270
$DC 5756
SDC 5564
SDC 7720
SDC 1700
POP

D34 INCR
SDC 1252
SDC 5760
SDC 5152
SDC 5364
SDC 5352
SDC 5160
SDC 5737
SDC 3600
POP

D35 INCR
SDC 1150
SDC 7272
SDC 6420
SDC 6036
SDC 1637
SDC 0
POP

D36 INCR
SDC 1272
SDC 7230
SDC 5076
SDC 6655
SDC 6430
SDC 1720
SDC 0
POP

D37 INCR
SDC 2272
SDC 6230

A-14

D40

D4I

042

D43

$0C 5076
SOG 5665
SOG 5327
SOG 3010
SOG 0
POP
INGR
SOG 7272
SOG 5230
SOG 5076
SOG 7663
SOG 5527
SOG 3010
SOG 0
POP
INGR
SOG 6271
SOG 5152
SOG 3454
SOG 5657
SOG 1767
SOG 5617
SOG 2000
POP
INGR
SOG 1150
SOG 7261
SOG 5234
SOG 5456
SOG 5737
SOG 2710
SOG 0
POP
INGR
SOG 6271
SOG 5152
SOG 7454
SOG 3727
SOG 5574
SOG 3020

A-15

D44

D45

D46

D47

DS0

D51

SDC 1700
POP
INCF I
SOC 1251
SOC 7151
SDC 3454
SDC 5717
SDC 67P7
SDC 0
POP
INCR
SDC 1252
SDC 7151
SDC 3736
SDC 0
POP
INCR
«DC 1151
SDC 7252
SDC 1555
SDC 5010
SDC 6037
SDC 1600
POP
INCR
SDC 3252
SDC 7050
SDC 3716
SDC 0
POP
INCR
SDC 1150
SDC 5372
SDC 5251
SDC 3727
SDC 2600
POP
INCR
SDC 1150
SDC 5172

A-16

052

D53

054

055

056

057

SOG 5253
SOG 3727
SOG 2600
POP
INGR
SOG 5172
SOG 7260
SOG 3636
SOG 5450
SOG 1730
SOG 0
POP
INGR
SOG 5160
SOG 7272
SOG 6437
SOG 3716
SOG 0
POP
INGR
SOG 3051
SOG 7371
SOG 3736
SOG 1600
POP
INGR
SOG 3150
SOG 7454
SOG 1252
SOG 7050
SOG 37C»6
SOG 0
POP
INGR
SOG 5271
SOG 7337
SOG 3717
SOG 0
POP
INGF f

A-17

060

061

062

063

064

$DC 1150
SOC 7272
SDC 6520
SOC 5157
SOC 3726
SOC 0
POP
INCR
SOC 1151
SOC 6361
SOC 1655
SOC 7037
SOC 1600
POP
INCR
SOC 6250
SOC 5630
SDC 1720
SOC 0
POP
INCF t
SOC 6250
SOC 6655
SOC 1130
SOC 3000
POP
INCR
SOC 1262
SDC 1262
SDC 5056
SDC 1666
SDC : 2710
SOC 3000
POP
INCR
SDC 1262
SOC 1262
SOC ! 5.056
SOC ! 1676
SDC ! 5530

A-18

SDC 3010
SDC 0
POP

065 INCR
SDC 1150
SOC 1268
SDC 5051
SDC 5253
SDC 6455
SDC 3737
SDC 1000
POP

066 INCR
SDC 1150
SDC 1272
SDC 6237
SDC 2726
SDC 0
POP

D67 INCR
SDC 2122
SDC 7237
SDC 2726
SOC 0
POP

D70 INCR
SDC 1132
SDC 7210
SDC 5066
SDC 3717
SOC 1600
POP

071 INCR
SOC 1252
SDC 5760
SDC 5152
SDC 5364
SDC 5352
SDC 5160
SDC 5714

A-19

SDC 5456
SOC 1666
SDC 2730
SDC 0
POP

D72 INCR
SDC 5172
SDC 7210
SDC 5076
SDC 7612
SDC 5314
SDC 5412
SDC 5210
SDC 5010
SDC 5016
SDC 5637
SDC 0
POP

D73 INCR
SDC 5153
SDC 5261
SDC 5355
SDC 1777
SDC 1454
SDC 1151
SDC 3700
POP

D75 VEC
SDC 2020
SDC 4000
POP

D76 SVEC
SDC 50
POP

A-20

STITLE TRACKING PATTERN GENERATOR

XP LAW 3000
SOG 1105

XPY SDC 1000
XPX SDC 5000

SDC 1400
SDC XI
SDC 60
SVEC
SDC 24
SDC 4047
SDC 1400
SDC X2
SDC 60
SVEC
SDC 1
SDC 4067
SDC 1400
SDC X3
SDC 60
SVEC
SDC 2403
SDC 4740
SDC 1400
SDC X2
SDC 60
SVEC
SDC 100
SDC 6700
SDC 340
SDC 1400
SDC XA

XPS POP
SVEC
SDC 404
SDC 4030
SDC 7000
SDC 4010
SDC 5040

A-21

VEC
$DC 4
SDC A
SDC 4000
SDC 2020
SDC 6020
SDC 0
SDC 4000
SDC 20
SDC 4020
SDC 0
SDC 4
SDC 4
SDC 4000
SDC 2030
SDC 6030
SDC 0
SDC 4000
SDC 30
SDC 4030
SDC 0
SDC 4
SDC 4
SDC 4000
SDC 2040
SDC 6040
SDC 0
SDC 4000
SDC 40
SDC 4040
SDC 0
SDC 4
SDC 4
SDC 4000
SDC 2050
SDC 6050
SDC 0
SDC 4000
SDC 50
SDC 4050

A-22

SDC 0
SDC 4
SDC 4
SDC 4000
SDC 2060
SDC 6060
SDC 0
SDC 4000
SDC 60
SDC 4060
SDC 0
SDC 4
SDC 4
SDC 4000
SDC 2070
SDC 6070
SDC 0
SDC 4000
SDC 70
SDC 4070
SDC 0
SDC 4
SDC t
SDC 4000
SDC 2100
SDC 6100
SDC 0
SDC 4000
SDC 100
SDC 4100
SDC 4000
SDC 1400
SDC X5
POP

A-23

«TITLE INTERRUPT DISPATCHER

DAC 6
LACO
DAC 3
LACS
DAC 2
IOT 1441
SKP
JMP IFI
IOT 1401
SKP
JMP I EG
IOT 101
SKP
JMP IRD
IOT 1301
SKP
JMP IAD
IOT 301
SKP
JMP 1KB
IOT 201
SKP
JMP I PC
IOT 401
SKP
JMP ITP
IOT 1
SKP
JMP ICK
IOT 612
DAC DSS
AND =20
SZA
JMP IPS
IOT 702
JMP ♦♦3
IOT 724
JMP IR

SAVE AC CONTENTS
GET MÖ CONTENTS
SAVE MO CONTENTS
GET SC CONTENTS
SAVE SC CONTENTS
SKIP ON DATAPHONE
TEST NEXT FLAG
SERVICE DATAPHONE
SKIP ON DATAPHONE
TEST NEXT FLAG
SERVICE DATAPHONE

RECEIVE FLAG

INPUT INTERRUPT
TRANSMIT FLAG

OUTPUT INTERRUPT
SKIP ON READER FLAG
TEST NEXT FLAG
SERVICE READER INTERRUPT
SKIP ON A/D CONVERTER FLAG
TEST NEXT FLAG
SERVICE A/D CONVERTER INTERRUPT
SKIP ON KEYBOARD FLAG
TEST NEXT FLAG
SERVICE KEYBOARD INTERRUPT
SKIP ON PUNCH FLAG
TEST NEXT FLAG
SERVICE PUNCH INTERRUPT
SKIP ON TELEPRINTER FLAG
TEST NEXT FLAG
SERVICE TELEPRINTER INTERRUPT
SKIP ON CLOCK FLAG
TEST NEXT FLAG
SERVICE CLOCK INTERRUPT
READ DISPLAY STATUS
SAVE DISPLAY STATUS WORD 1
GET PUSH BUTTON FLAG
SKIP ON NO PUSH BUTTON FLAG
SERVICE PUSH BUTTON INTERRUPT
SKIP ON EDGE FLAG
TEST NEXT FLAG
RESUME DISPLAY
RETURN FROM INTERRUPT

A-24

SKIP ON LIGHT PEN FLAG
TEST NEXT FLAG
SERVICE LIGHT PEN INTERRUPT
SKIP ON INTERNAL STOP FLAG
TEST NEXT FLAG
SERVICE INTERNAL STOP INTERRUPT
SKIP ON MANUAL INTERRUPT FLAG
INVALID INTERRUPT
EMERGENCY REINITIALIZATION

!R LAC 2 GET SC CONTENTS
COMPLEMENT SHIFT COUNT
FORM NORM INSTRUCTION
TRUNCATE CARRY
STORE NORM INSTRUCTION
RESTORE SC CONTENTS
GET MO CONTENTS
RESTORE M8 CONTENTS
RESTORE AC CONTENTS
ENABLE INTERRUPTS
OEBREAK AND RESTORE
RETURN TO INTERRUPTED PROGRAM

IOT 642
SKP
JMP ILP
IOT 721
SKP
JMP IIS
IOT 722
JMP El
JMP EM
LAC 2
XOR ■ 77
TAD »640402
AND »640477
DAC •♦I
HLT
LAC 3
LMQ
LAC 6
IOT 42
IOT 3344
JMP« > 0

A-25

STITLE SYSTEM DIAGNOSTICS

GET BREAK FIELD 1 PARAMETER
LOAD BREAK FIELD
GET ADDRESS OF INTERNAL STOP
INITIALIZE DISPLAY
GET ADDRESS OF TEXT LIST
INITIALIZE SYSTEM

ENABLE INTERRUPTS
GET PUNCH STATUS SWITCH
SKIP IF PUNCH IS IDLE
WAIT FOR PUNCH TO FINISH
GET TELEPRINTER STATUS SWITCH
SKIP IF TELEPRINTER IS IDLE
WAIT FOR TELEPRINTER TO FINISH
READ 201 STATUS
GET TRANSMIT STATE BIT
SKIP IF NOT TRANSMITTING
WAIT FOR END OF TRANSMISSION
DISABLE INTERRUPTS
GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

STEXT "TASK QUEUE EMPTY"

El LAC ■•♦8 GET ADDRESS OF TEXT LIST
JMP E REINITIALIZE SYSTEM
SDC 6
STEXT "INVAuTD INTERRUPT"

EM LAC ■♦♦2 GET ADDRESS OF TEXT LIST
JMP E REINITIALIZE SYSTEM
SDC 6
STEXT "MANUAL INTERRUPT"

EQ LAC »♦♦2 GET ADDRESS OF TEXT LIST
JMP E REINITIALIZE SYSTEM

SYSTEM LAW 4400
IOT 705
LAW = 1400
IOT 1605
LAC s**2
JMP E
SDC 5
STEXT "SY

EE IOT 42
LAC BP3
SZA
JMP *-2
LAC BT1
SZA
JMP *-2
IOT 1412
AND «2
SZA
JMP ♦ -3
IOT 2
LAC = ♦♦2
JMP E
SDC 6

A-26

SDC 7
STEXT "TASK QUEUE OVERFLOW"

ES DZM
DZM
LAW
10T
LAW
IOT
LAC
JMP
SDC

BP3
BT1
4400
705
• 1400
160S
■ «♦8
E
5

CLEAR PUNCH STATUS SWITCH
CLEAR TELEPRINTER STATUS SWITCH
GET BREAK FIELD 1 PARAMETER
LOAD BREAK FIELD
GET ADDRESS OF INTERNAL STOP
INITIALIZE DISPLAY
GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

STEXT "PANEL RECOVERY"

ET IOT 2
CLC
TAD 20
JMS C.B6
AND «7777
TAD «760000
DAC ET1
LACQ
DAC ET2
LAC m**2
JMP E
SDC 13
STEXT "ILLEGAL

ET1 SDC 0
ET2 SDC 0

DISABLE INTERRUPTS
LOAD AC WITH -1
ADD PROGRAM COUNTER DURING TRAP
CONVERT TO 6-81T CODE
TRUNCATE HIGH ORDER DIGIT
USE BLANK AS HIGH ORDER CHARACTER
STORE HIGH ORDER CHARACTERS
GET LOW ORDER DIGITS
STORE LOW ORDER DIGITS
GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

INSTRUCTION AT LOC"

A-27

STITLE SYSTEM INITIALIZER

DAC 25
IOT 7702
IOT 1412
AND »I
SZA
JMP *-3
IOT 1444
LAC »440
IOT 1404
LAC BP3
SNA
JMP ♦♦3
IOT 201
JMP *-l
LAC BT1
SNA
JMP «♦3
IOT 401
JMP *-l
IOT 612
AND «7400
SNA+CLA
JMP »-3
JMS PS1
IOT 4
IOT 3302
DZM BP3
DZM BT1
DZM PE*I
DZM DEM
DZM OWV
DZM NA*2
DZM NC*2
DZM STR0*2
DZM STHR*2
DZM SLY*2
DZM SLX*2
LAW 10

SAVE ADDRESS OF DIAGNOSTIC
ENTER EXTEND MODE
READ 201 STATUS
GET RECEIVE STATE BIT
SKIP IF NOT RECEIVING
WAIT FOR END OF RECORD
CLEAR 201 INTERFACE
GET TERM RDY BIT * FRAME SIZE 8
SET INITIAL 201 INTERFACE STATE
GET PUNCH STATUS SWITCH
SKIP IF PUNCH ACTIVE
PUNCH NOT ACTIVE
SKIP ON PUNCH FLAG
WAIT FOR PUNCH FLAG
GET TELEPRINTER STATUS SWITCH
SKIP IF TELEPRINTER ACTIVE
TELEPRINTER NOT ACTIVE
SKIP ON TELEPRINTER FLAG
WAIT FOR TELEPRINTER FLAG
READ DISPLAY STATUS
GET DISPLAY FLAG BITS
SKIP IF DISPLAY STOPPED
WAIT FOR DISPLAY TO STOP
CLEAR PUSH BUTTONS
DISABLE CLOCK
CLEAR ALL FLAGS
INDICATE PUNCH IDLE
INDICATE TELEPRINTER IDLE
DISABLE OPERATION OF PUSH BUTTONS
DISABLE DISPLAY INTERRUPTS
CLEAR TRANSLATION VALUE
UNLOCK N.A
UNLOCK N. c
UNLOCK S. TRD
UNLOCK S. . TRR
UNLOCK s. LY
UNLOCK s. LX
GET TELEPRINTER MASK

A-28

El

DAC
DAC
LAC
DAC
DAC
DAC
DZM
LAC
DAC
DAC
LAC
DAC
DAC
LAC
DAC
DAC
LAC
DAC
LAC
DAC
LAW
DAC
LAC
DAC
LAW
IGT
LAW
IOT
LAW
IOT
LAW
IOT
LAC
JMS
IOT
LAW
JMS
NOP
DZM
DZM

STATUS
BFTTY2
TO
TQM
T0*2
BRS
BRO
BPO
BPO+1
BPQ+2
BKO
BKO+1
BKO+2
BTQ
BTO+I
BTQ4-2
«DN
DPT
»PN
PTT
3000
XP
■0
DHAL+7
POP I
645
7763
665
4400
705
D
1605
•BFENQ
BFENOS
42
BFENO
B.FO

26
27

ALLOCATE TELEPRINTER ONLY
SET BFTTY ALLOCATION MASK
GET POINTER TO END OF TASK QUEUE
RESET INPUT POINTER
RESET OUTPUT POINTER
SET RECORD SEEK SWITCH
INDICATE NEW RECORD NEEDED
GET POINTER TO END OF PUNCH BUFFER
RESET INPUT POINTER
RESET OUTPUT POINTER
GET POINTER TO END OF KB BUFFER
RESET INPUT POiNTER
RESET OUTPUT POINTER
GET POINTER TO END OF TP BUFFER
RESET INPUT POINTER
RESET OUTPUT POINTER
GET ADDRESS OF NULL DISPLAY SERVICE
SET NULL LIGHT PEN SERVICE
GET ADDRESS OF NULL PB SERVICE
SET NULL PUSH BUTTON SERVICE
GET POP INSTRUCTION
INHIBIT TRACKING PROCESS
GET ADDRESS OF HIGHEST ACTIVE LEVEL
REMOVE EVERYTHING FROM HAL
GET ADDRESS OF PUSH DO UM LIST
SET PUSH DOWN POINTER
GET INITIAL DISPLAY CONDITIONS
SET INITIAL DISPLAY CONDITIONS
GET BREAK FIELD 1 PARAMETER
LOAD BREAK FIELD
GET ADDRESS OF SYSTEM DISPLAY FILE
START DISPLAY
GET ENQUIRY CHARACTER
INITIALIZE 201 TASKS
ENABLE INTERRUPTS
GET ENQUIRY CHARACTER
SEND ATTENTION INTERRUPT
DATA SET NOT CONNECTED
CLEAR POINTER TO DIAGNOSTIC LEVEL
CLEAR POINTER TO DIAGNOSTIC LEAF

A-29

JMS S.TL CREATE TITLE LEAF
JMP E2 USE TELETYPE ONLY
DAC E3 SAVE POINTER TO TITLE LEAF
LAC «EF GET ADDRESS OF TEXT LIST
JMS L.D CREATE TITLE LEAF
JMP E2 USE TELETYPE ONLY
LMO SET UP PARAMETER
LAC E3 GET POINTER TO TITLE LEVEL
JMS S.TI INSERT TITLE LEAF
JMP E2 USE TELETYPE ONLY
LAC '370 GET Y TITLE COORDINATE
LMO SET UP PARAMETER
LAC E3 GET POINTER TO TITLE LEVEL
JMS S.LY SET Y TITLE COORDINATE
LAW -144 GET X TITLE COORDINATE
LMO SET UP PARAMETER
LAC E3 GET POINTER TO TITLE LEVEL
JMS S.LX SET X TITLE COORDINATE
LAW 500 GET SCALE X2 PARAMETER
LMQ SET UP PARAMETER
LAC E3 GET POINTER TO TITLE LEVEL
JMS S.LP SET TITLE SCALE
LAC E3 GET POINTER TO TITLE LEVEL
LMO SET UP PARAMETER
LAC «DHAL GET ADDRESS OF HIGHEST ACTIVE LEVEL
JMS S.TI INSERT TITLE LEVEL
JMP E2 USE TELETYPE ONLY
JMS S.TL CREATE DIAGNOSTIC -IVEL
JMP E2 USE TELETYPE ONLY
DAC 26 SET POINTER TO DIAGNOSTIC LEVEL
LAC »200 GET Y DIAGNOSTIC DISPLACEMENT
LMQ SET UP PARAMETER
LAC 26 GET ADDRESS OF DIAGNOSTIC LEVEL
JMS S.LY TRANSLATE LEVEL IN Y DIRECTION
LAW -4C0 GET X DIAGNOSTIC DISPLACEMENT
LMO SET UP PARAMETER
LAC 26 GET ADDRESS OF DIAGNOSTIC LEVEL
JMS S.LX TRANSLATE LEVEL IN X DIRECTION
LAW 500 GET SCALE X2 PARAMETER
LMO SET UP PARAMETER

A-30

E2

EF

LAC 26
JMS S.LP
LAC 26
LMO
LAC ■ DHAL
JMS S.TI
JMP E2
LAC 25
SZA
JMS L.D
JMP E2
DAC 27
LMQ
LAC 26
JMS S.TI
NOP
LAC 25
SNA
JMP IDLE
LAC «747575
JMS B.T
LAC 25
JMS L.T
LAC »747575
JMS B.T
JMP IDLE

SOC 11
STEXT "SEL EXECUTIVE

GET
SET
GET
SET
GET

ADDRESS OF DIAGNOSTIC LEVEL
DIAGNOSTIC SCALE
ADDRESS OF DIAGNOSTIC LEVEL
UP PARAMETER
ADDRESS OF HIGHEST ACTIVE LEVEL

INSERT DIAGNOSTIC LEVEL
DISPLAY STORAGE EXCEEDED
GET ADDRESS OF TEXT LI^T
SKIP IF DISP STORAGE BEING CLEARED
CREATE DIAGNOSTIC LEAF
USE TELETYPE ONLY
SET POINTER TO DIAGMOSTIC LEAF
SET UP PARAMETER
GET ADDRESS OF DIAGNOSTIC LEVEL
INSERT DIAGNOSTIC LEAF
USE TELETYPE ONLY
GET POINTER TO TEXT LIST
SKIP IF COMMENT TO BE TYPED
BEGIN IDLE-TIME TASK
GET TELEPRINTER POSITIONING CODE
POSITION TELEPRINTER
GET ADDRESS OF TEXT LIST
TYPE DIAGNOSTIC
GET TELEPRINTER POSITIONING CODE
POSITION TELEPRINTER
BEGIN IDLE-TIME TASK

SYSTEM (01)"

A-31

B

81

B2

83

B4

«TITLE

SEQU 12000

SDC 0
CM A
TAD «1
DAC T»
DAC T2
LAC »STORE
DAC T3
DAC T4
SAD =20000
JMP* B
LAC* T4
SNA
JMP B2
LAC T2
DAC TI
LAC T4
TAD *A
JMP Bl
ISZ Tl
JMP ♦ ♦4
LAC T3
ISZ B
JMP« • B
LAC T4
TAD = 4
JMP BI + I

SDC 0
LAC = 1
JMS B
JMP« > B3
ISZ B3
JMP« > B3

SDC 0
LAC «2

DISPLAY STRUCTURE STORAGE MANAGER

LOWER LIMIT OF DISPLAY STORAGE

FORM I'S COMP OF NUMBER OF BLOCKS
FORM 2^ COMP OF NUMBER OF BLOCKS
INITIALIZE COUNTER
STORE VALUE FOR RESETTING COUNTER
GET LOWER LIMIT OF DISPLAY STORAGE
SET POINTER TO CANDIDATE
SET POINTER TO NEW BLOCK
SKIP IF STORAGE NOT EXCEEDED
NOT ENOUGH FREE STORAGE
GET FIRST WORD FROM BLOCK
SKIP IF BLOCK NOT AVAILABLE
ADD BLOCK TO CANDIDATE
GET INITIAL VALUE OF COUNTER
REINITIALIZE COUNTER
GET ADDRESS OF UNAVAILABLE BLOCK
FORM ADDRESS OF NEXT BLOCK
PROCEED WITH NEXT CANDIDATE
INCREMENT COUNTER i SKIP IF DONE
PREPARE TO ADD ANOTHER BLOCK
GET ADDRESS OF ACQUIRED STORAGE
INDICATE SUCCESS
RETURN
GET ADDRESS OF BLOCK JUST ADDED
FORM ADDRESS OF NEXT BLOCK
ADD ANOTHER BLOCK

GET SINGLE BLOCK PARAMETER
FIND SINGLE BLOCK
NO SINGLE BLOCK AVAILABLE
INDICATE SUCCESS
RETURN

GET DOUBLE BLOCK PARAMETER

A-32

JMS B FIND DOUBLE BLOCK
JMP* 84 NO DOUBLE BLOCK AVAILABLE
ISZ B4 INDICATE SUCCESS
JMP* B4 RETURN

.

A-33

STITLE WORD QUEUE MANAGER

OC

OA

01

OF

IOT 2
JMS OS
LAC* OP
DAO OIP
DAC* OOP
IOT A2
JMP* O.C

IOT 2
JMS 0A1
SKP
ISZ O.A
IOT 42
JMP* O.A

IOT 2
JMS OS
LAC* OOP
DAC 23
TAD ■ -3
SAD OP
LAC* OP
SAD* OP
SKP
TAD »2
SAD* OIP
JMP ♦ ♦5
DAC* OOP
LACQ
HAC* 23
ISZ o.>
IOT 42
JMP* O.I

IOT 2
JMS OFI
SKP
ISZ O.F

DISABLE INTERRUPTS
SET CONTROL POINTERS
GET POINTER TO END OF QUEUE
SET INPUT POINTER
SET OUTPUT POINTER
ENABLE INTERRUPTS
RETURN

DISABLE INTERRUPTS
ADD WORD TO O'.'EUE
OVERFLOW
INDICATE SUCCESS
ENABLE INTERRUPTS
RETURN

DISABLE INTERRUPTS
SET CONTROL POINTERS
GET OUTPUT POINTER
SAVE OUTPUT POINTER
SUBTRACT 3
SKIP IF NO WRAP-AROUND
GET POINTER TO END OF QUEUE
SKIP IF NO WRAP-AROUND
CHECK FOR OVERFLOW
FORM NEW OUTPUT POINTER
SKIP IF NO OVERFLOW
OVERFLOW
SET NEW OUTPUT POINTER
GET VALUE TO BE STORED
STORE VALUE IN QUEUE
INDICATE SUCCESS
ENABLE INTERRUPTS
RETURN

DISABLE INTERRUPTS
FETCH WORD FROM QUEUE
QUEUE EMPTY
INDICATE SUCCESS

A-34

IOT A2
JMP* Q.F

ENABLE INTERRUPTS
RETURN

QA1 SDC 0
JMS OS
LAC* QIP
JMS QINC
SAD* OOP
JMP* OA1
DAC* 01P
DAC 23
LACO
DAC* 23
ISZ 0A1
JMP* 0A1

SET CONTROL POINTERS
GET INPUT POINTER
INCREMENT
SKIP IF NO OVERFLOW
OVERFLOW
SET NEW INPUT POINTER
SAVE COPY OF POINTER
GET WORD TO BE STORED
STORE WORD IN QUEUE
INDICATE SUCCESS
RETURN

0F1

OS

SDC 0
JMS OS
LAC* OOP
SAD* 01P
JMP* 0F1
JMS QINC
DAC* OOP
DAC 23
LAC* 23
ISZ QF1
JMP* QF1

SDC 0
DAC OP
TAD «1
DAC 01P
TAD «1
DAC OOP
JMP* OS

SET CONTROL POINTERS
GET OUTPUT POINTFR
SKIP IF QUEUE NOT EMPTY
QUEUE EMPTY
INCREMENT
SET NEW OUTPUT POINTER
SAVE COPY OF POINTER
GET WORD FROM QUEUE
INDICATE SUCCESS
RETURN

SET POINTER TO QUEUE
COMPUTE ADDRESS OF NEXT LOCATION
SET POINTER TO INPUT POINTER
COMPUTE ADDRESS OF NEXT LOCATION
SET POINTER TO OUTPUT POINTER
RETURN

QINC SDC 0
SAD* QP
LAC OOP
TAD «1

SKIP IF NOT END OF QUEUE
WRAP AROUND TO BEGINNING OF QUEUE
INCREMENT

.

A-35

JMP* QIu'C RETURN

A-36

«TITLE

TS IOT 2
AND »77777
JMS TU
IOT 42
JMP* T.S

TP LAW 17776
TAD T.P
JMS T.S

TF IOT 2
JMS TIO
DAC 23
RAL
SZL
JMP TFI
SPA
JMP TF2
IOT 42
JMP* 23

TFI JMS TIO
LMO
JMS TIO
JMP TF1-2

TF2 JMS TIO
AND STATUS
SNA
JMP TF3
LAC 23
JMS TU
LAC* Tä+2
JMS Til
IOT 42
JMP TF

TF3 LAC* TQ*2
XOR STATUS
DAC STATUS
JMP TFI-2

*

TASK SCHEDULER

DISABLE INTERRUPTS
TRUNCATE HIGH ORDER BITS
PUT TASK ADDRESS ON QUEUE
ENABLE INTERRUPTS
RETURN

LOAD AC WITH -2
FORM ADDRESS OF NEW TASK
SCHEDULE NEW TASK
DISABLE INTERRUPTS
READ WORD FROM TASK QUEUE
SAVE TASK ADDRESS
SHIFT TYPE BITS INTO LINK 4 SI ON
SKIP IF NOT REENTRY DELAY
RESTORE MQ I AC AND EXECUTE
SKIP IF NOT ALLOCATION DELAY
CHECK ELIGIBILITY
ENABLE INTERRUPTS
EXECUTE TASK
READ WORD FROM TASK QUEUE
RESTORE MQ
READ WORD FROM TASK QUEUE
EXECUTE TASK
READ WORD FROM TASK QUEUE
FORM ELIGIBILITY CHECK
SKIP IF TASK NOT ELIGIBLE
MODIFY STATUS & EXECUTE
GET ADDRESS OF TASK
PUT BACK ON TASK QUEUE
GET ALLOCATION MASK
PUT BACK ON TASK QUEUE
ENABLE INTERRUPTS
GET ANOTHER TASK
GET ALLOCATION MASK
OR WITH STATUS WORD
STORE NEW STATUS WORD
EXECUTE TASK

A-37

TA AND =17777
IOT 2
DAC 23
LAC T.A
AND »77777
XOR «200000
JMS Til
LAC 23
JMS Til
JMP TF*I

TRUNCATE HIGH ORDER BITS
DISABLE INTERRUPTS
SAVE ALLOCATION MASK
GET ADDRESS OF RETURN
TRUNCATE HIGH ORDER BITS
INDICATE ALLOCATION DELAY
PUT TASK ADDRESS ON QUEUE
GET ALLOCATION MASK
PUT ALLOCATION MASK ON QUEUE
GET ANOTHER TASK

TR CMA
AND STATUS
DAC STATUS
JMP* T.R

COMPLEMENT RELEASE MASK
MODIFY ALLOCATION STATUS
STORE NEW ALLOCATION STATUS
RETURN

TL DAC Tl
LAW 17776
TAD T.L
DAC T2
LAC* T.L
SZA
JMP TL1
LAC* T2
DAC* T.L
LAC Tl
ISZ T.L
JMP* T.L

TL1 CLC
TAD* T2
AND «77777
XOR «400000
IOT 2
JMS Til
LACO
JMS Til
LAC Tl
JMS Til
JMP TF+1

SAVE AC CONTENTS
LOAD AC WITH -2
FORM ADDRESS OF SUBROUTINE ENTRY
SAVE ADDRESS OF SUBROUTINE ENTRY
GET SAVED RETURN POINTER
SKIP IF SUBROUTINE ENTERABLE
RESCHEDULE SUBROUTINE CALL
GET RETURN POINTER
SAVE AND LOCK SUBROUTINE
RESTORE AC CONTENTS
ADVANCE PAST SAVED RETURN POINTER
RETURN
LOAD AC WITH -1
FORM ADDRESS OF SUBROUTINE CALL
TRUNCATE HIGH ORDER BITS
INDICATE REENTRY DELAY
DISABLE INTERRUPTS
PUT TASK ADDRESS ON QUEUE
GET CONTENTS OF MQ
PUT ON TASK QUEUE
RESTORE AC CONTENTS
PUT ON TASK QUEUE
GET A NEW TASK

A-38

TU DAC Tl
LAC* T.U
TAD «2
DAC T2
LAC* T2
DAC T3
DZM* T2
LAC TI
JMP* T3

SAVE AC CONTENTS
GET ADDRESS OF SUBROUTINE
FORM ADDRESS OF SAVED RETURN
SAVE ADDRESS OF SAVED RETURN
GET SAVED RETURN
SAVE TEMPORARILY
UNLOCK SUBROUTINE
RESTORE AC CONTENTS
RETURN FROM SUBROUTINE

TV SDC 0
DAC Tl
LAC* TV
DAC T2
ISZ TV
LAC TV
DAC T.L
JMP TL+4

SAVE AC CONTENTS
GET POINTER TO SUBROUTINE
SAVE POINTER TO SUBROUTINE
FORM POINTER TO SAVED RETURN
GET POINTER TO SAVED RETURN
SIMULATE CALL TO T.L
FAKE AN ENTRY TO T.L

TIO SDC 0
LAC TQ+2
SAD TO*I
JMP EE
JMS TI
DAC T0*2
LAC* TO+2
JMP* TIO

GET OUTPUT POINTER
SKIP IF TASK QUEUE NOT EMPTY
TASK QUEUE EMPTY
INCREMENT
STORE NEW OUTPUT POINTER
GET WORD FROM TASK QUEUE
RETURN

Til SDC 0
DAC 24
LAC TO*I
JMS Tl
DAC TO+1
SAD TO+2
JMP EQ
LAC 24
DAC* TQ+I
JMP* Til

SAVE VALUE TO BE STORED
GET INPUT POINTER
INCREMENT
STORE NEW INPUT POINTER
SKIP IF NO TASK QUEUE OVERFLOW
TASK QUEUE OVERFLOW
GET VALUE TO BE STORED
PUT IN TASK QUEUE
RETURN

TI SDC 0

A-39

SAD TO SKIP IF NO WRAP-AROUND
LAC zTQtS GET ADDRESS BEFORE FIRST DATA WORD
TAD =1 INCREMENT POINTER
JMP* TI RETURN

TQ SDC ♦♦200
SDS 200

A-40

CB6

C6A

C6A1

STITLE

CLL
LRS 14
ALS 3
LRS 6
ALS 3
LLS 11
DAC Tl
LLS 6
ALS 3
LRS 6
ALS 3
AND ■ 77
LRS 11
LAC Tl
JMP* > C.B6

AND ■ 77
TAD ■ C6A1
DAC Tl
LAC* Tl
JMP* C.6A

SDC 260
SDC 261
SDC 262
SDC 263
SDC 264
SDC 265
SDC 266
SDC 267
SDC 270
SDC 271
SDC 301
SDC 302
SDC 303
SDC 304
SDC 305
SDC 306

FORMAT CONVERTER

USE ZERO'. TO FILL HOLES
SHIFT DIGITS 2» 3* 4« & 5 INTO MQ
CONVERT DIGIT 2
SHIFT DIGIT 2 INTO MO
CONVERT DIGIT 1
SHIFT DIGITS 0« 1« «2 INTO AC
STORE HIGH ORDER DIGITS
SHIFT DIGITS 3 * A INTO AC
CONVERT DIGIT 5
SHIFT DIGIT 4 INTO MO
CONVERT DIGIT 4
CONVERT DIGIT 3
SHIFT LOW ORDER DIGITS INTO MQ
GET HIGH ORDER DIGITS
RETURN

TRUNCATE HIGH ORDER BITS
ADD ADDRESS OF TABLE
SAVE TEMPORARILY
GET CONVERTED VALUE
RETURN

A-41

SOG 307
$DC 310
SDC 311
SOG 312
SDG 313
SDC 314
SOG 315
SDC 316
SDG 317
SDC 320
SDC 321
SDG 322
SDG 323
SDG 324
SDG 32 5
SDG 326
SDG 327
SDC 330
SDC 331
SDC 332
SDC 252
SDC 257
SDC 253
SDC 255
SDC 250
SDC 251
SDG 333
SDG 335
SDC 274
SDG 275
SDG 276
SDG 336
SDC 337
SDG 256
SDG 254
SDG 272
SDC 273
SDC 277
SDC 241
SDC 247

A-42

SDC 242
SDC 244
SDC 243
«DC 246
SDC 213
SDC 212
SDC 240
SDC 377

CA6

CA6I

AND »177
TAD aCA61
DAC Tl
LAC* Tl
JMP* C.A6

SDC 77
SD^ 77
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77
kDC 77
SDC 77
SDC 77
SDC 75
SDC 77
SDC 77
SDC 74
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77

TRUNCATE HIGH ORDER BITS
ADD ADDRESS OF TABLE
SAVE TEMPORARILY
GET CONVERTED VALUE
RETURN

A-43

$DC 77
$DC 77
«DC 77
$DC 77
JDC 77
$DC 77
$DC 77
SDC 76
SDC 66
SDC 70
SDC 72
SDC 71
SDC 77
SDC 73
SDC 67
SDC 50
SDC 51
SDC AA
SDC A6
SDC 62
SDC 47
SDC 61
SDC 45
SDC 00
SDC 01
SDC 02
SDC 03
SDC 04
SDC 05
SDC 06
SDC 07
SDC 10
SDC 11
SDC 63
SDC 64
SDC 54
SDC 55
SDC 56
SDC 65
SDC 77

,.

A-44

SDC 12
SDC 13
SDC 14
SDC 15
SDC 16
SDC 17
SDC 20
SDC 21
SDC 22
SDC 23
SDC 24
SDC 25
SDC 26
SDC 27
SDC 30
SDC 31
SDC 32
SDC 33
SDC 34
SDC 35
SDC 36
SDC 37
SDC 40
SDC 41
SDC 42
SDC 43
SDC 52
SDC 77
SDC 53
SDC 57
SDC 60
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77
SDC 77
$DC 77

A-45

$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
JDC 77
$DC 77
$nc 77
iüC 77
$DC 77
SDC 77
$DC 77
SDC 77
$DC 77
$DC 77

CCB DAC Tl SAVE VALUE TO BE CONVERTED
AND «1777 GET MAGNITUDE
DAC T2 SAVE MAGNITUDE
LAC Tl GET VALUE TO BE CONVERTED
AND «2000 GET SIGN BIT
SNA SKIP IF NEGATIVE
JMP CCB1 DO NOT MODIFY MAGNITUDE
LAC T2 GET MAGNITUDE
CM A FORM 1 'S COMPLEMENT
TAD si FORM 2^ COMPLEMENT
JMP« CCB RETURN

CCB1 LAC T2 GET CONVERTED VALUE
JMP* CCB RETURN

CBC SMA SKIP IF NEGATIVE
JMP CBC1 DO NOT FORM NEGATIVE

A-46

CBC1

CMA
AND mim
TAD »8001
AND «3777
JMP* CBC
AND »1777
JMP* CBC

FORM I 'S COMPLEMENT
GET MAGNITUDE
SET SIGN BIT I FORM 2'S COMPLEMENT
CLEAR ESCAPE/IN TENSITY BIT
RETURN
CONVERT TO MODULO 2*10
RETURN

.

A-47

BFDLE
BFSYN
BFACK
BFNAK
BFEOT
BFENQ
BFETB
BFETX

«TITLE

SEOU 220
SEOU 26
SEQU 6
SEOU 225
SEQU 204
SEOU 5
SEOU 27
SEOU 3

201 DATAPHOME BUFFER MANAGER

DATA LINK ESCAPE
SYNCHRONOUS IDLE
POSITIVE ACKNOWLEDGEMENT
NEGATIVE ACKNOWLEDGEMENT
END OF TRANSMISSION
ENOUIRY
END OF TEXT BLOCK
END OF TEXT

STATE BITS (LOW ORDER 5 BITS OF BFS)t
01 ACK OUTSTANDING
02 LAST INPUT RECORD COMPLETELY RECEIVED
04 ACK OUTPUT PENDING
10 NAK OUTPUT PENDING
20 DATA OUTPUT PENDING

BFI

BFI2
BFIB

IOT 1412
AND si000
SNA
JMP* 8.FI
LAC BFS
AND «2
SNA
JMP
LAC
SZA
.IMP BFI2
LAC* BFIO
DAC BFI3
ISZ BFIO
SMA
JMP
LAC
XOR
DAC
LAC
JMS
LAC

BFI 1
BFS
»6
BFS
«BFXMT
T.S
BFI3

READ 201 STATUS
GET SET READY BIT
SKIP IF DATA SET CONNECTED
DATA SET NOT CONNECTED
GET 201 TASK STATE
GET INPUT RECORD AVAILABLE BIT
SKIP IF INPUT RECORD AVAILABLE
WAIT FOR INPUT RECORD
GET FIRST RECEIVED CHARACTER
SKIP IF USER RECORD
WAIT FOR RECORD TO BE TYPED
GET CHARACTER FROM INPUT BUFFER
SAVE INPUT CHARACTER
INCREMENT INPUT POINTER
SKIP IF END OF RECORD
RETURN
GET 201 TASK STATE
FORM ACK PENDING STATE
SET NEW STATE
GET ADDRESS OF TRANSMISSION TASK
SCHEDULE TRANSMISSION TASK
GET END OF RECORD CHARACTER

A-48

BFI1 ISZ B.FI
JHP* B.FI
JHP BFI

BFI2 JMS T.P

BFO DAC BF03
IOT 1412
AND «1000
SNA
JMP* B.FO
LAC BFS
AND -21
SZA
JMP BF02
LAC BF03
DAC* BFOI
ISZ BFOI
SMA
JMP BFOI
LAC BFS
XOR "20
DAC BFS
LAC "BFXMT
JMS T.S

BFOI ISZ B.FO
JMP* B.FO
JMP BFO+1

BF02 JMS T.P

BFXMT IOT 1412
AND "60100
SZA
JMP BFXMT4
LAC BFS
RAR
SZL*RAR
JMP BFXMT4
SZL+RAR
JMP BFXMT4
SNL+RAR

INDICATE SUCCESS
RETURN
GET CHARACTER FROM INPUT BUFFER
SCHEDULE PREVIOUS LOC * TERMINATE

SAVE CHARACTER TO BE BUFFERED
READ 201 STATUS
GET SET READY BIT
SKIP IF DATA SET CONNECTED
DATA SET NOT CONNECTED
GET 201 TASK STATE
GET DATA OUTPUT ft ACK EXP BITS
SKIP IF OUTPUT BUFFER IS FREE
PUT CHARACTER INTO BUFFER LATER
GET CHARACTER TO BE BUFFERED
PUT CHARACTER IN OUTPUT BUFFER
INCREMENT INPUT POINTER
SKIP IF END-OF-RECORD CHARACTER
RETURN
GET 201 TASK STATE
SET DATA OUTPUT PENDING BIT
SET NEW 201 TASK STATE
GET ADDRESS OF TRANSMISSION TASK
SCHEDULE TRANSMISSION TASK
INDICATE SUCCESS
RETURN
PUT CHARACTER IN BUFFER
SCHEDULE PREVIOUS LOC ft TERMINATE

READ 201 STATUS
GET CAR DET# XMT REQ* CLR SEND BITS
SKIP IF ABLE TO TRANSMIT
RESCHEDULE BFXMT
GET 201 TASK STATE
SHIFT ACK EXPECTED BIT INTO LINK
SKIP IF ACK NOT EXPECTED
RESCHEDULE BFXMT
SKIP IF INPUT BUFFER EMPTY
RESCHEDULE BFXMT
SKIP IF ACK OUTPUT PENDING

.

A-49

BFXMT1

BFXMT2

BFXMT3

BFXMT4

JMP BFXMT1
LAC BFS
AND «33
DAC BFS
LAC »BFIB
DAC BFII
DAC BFIO
LAC aBFACKR
JMP BFXMT3
SNL+RAR
JMP BFXMT2
LAC BFS
AND a27
DAC BFS
LAC aBFNAKR
JMP BFXMT3
SNL
JMS T.F
LAC BFS
XOR =21
DAC BFS
LAC aBFOB
DAC BFOO
LAW -10
DAC BFC
LAW BFSYN
DAC 5
LAC «200005
DAC IFO
LAC =20000
IOT \A0A
JMS T.F
JMP BFXMT
JMS T.P

CHECK FOR NAK OUTPUT PENDING
GET 201 TASK STATE
CLEAR ACK OUTPUT PENDING BIT
SET NEW 201 TASK STATE
GET ADDRESS OF INPUT BUFFER
RESET INPUT POINTER
RESET OUTPUT POINTER
GET POINTER TO ACK RECORD
TRANSMIT ACK
SKIP IF NAK OUTPUT PENDING
CHECK FOR DATA OUTPUT PENDING
GET 201 TASK STATE
CLEAR NAK OUTPUT PENDING BIT
SET NEW 201 TASK STATE
GET POINTER TO NAK RECORD
TRANSMIT NAK
SKIP IF DATA OUTPUT PENDING
NO OUTPUT PENDING
GET 201 TASK STATE
CLEAR DATA BIT* SET ACK EXP BIT
SET NEW 201 TASK STATE
GET POINTER TO OUTPUT BUFFER
SET OUTPUT POINTER
LOAD AC WITH -8
SET SYN COUNT
GET SYN CHARACTER
SET TRANSMIT IMAGE
GET LAC 5 INSTRUCTION
INITIALIZE XMT INTERRUPT SERVICE
GET XMT REG BIT MASK
SET XMT REQ BIT
TERMINATE
START TRANSMISSION, IF APPLICABLE
SCHEDULE PREVIOUS LOC * TERMINATE

BFACKR LAW BFACK
BFNAKR LAW BFNAK

ACK RECORD
NAK RECORD

BFTTY LAC BFTTY2
JMS T.A

GET CONDITIONAL TELEPRINTER MASK
ALLOCATE TELEPRINTER» IF NECESSARY

A-f-O

DZM BFTTY2
LAC* BFIO
SPA
JMP BFTTYI
JMS C.A6
XOR ■777700
JMS B.T
ISZ BFIO
JMP BFTTY*3

BFTTYI LAW 17475
JMS B.T
LAC BFS
XOR «6
DAC BFS
LAW 10
DAC BFTTY2
JMS T.R
JMP BFXMT

IFI LAC 4
LRS 4
AND • 377
HLT
SAO ■BFSYN
SKP
JMP IFI6
IOT 1412
ANO «2000
IOT 1404
LAC «600000*1FI1
DAC IFI*3
IOT 1442
JMP IR

I FI1 SAD «BFSYN
JMP IFI1-2
SAO «BFDLE
JMP ♦ ♦3
LAC «740000
JMP IFI1-3
LAC «6000004>IFI2

PREPARE FOR POSSIBLE ENQUIRY
GET CHARACTER FROM BUFFER
SKIP IF NOT END-OF-RECORD CHARACTER
TERMINATE LINE
CONVERT TO 6-BIT CODE
PRECEDE WITH NULL CHARACTERS
TYPE CHARACTER
INCREMENT INPUT POINTER
TYPE NEXT CHARACTER
GET CARRIAGE RETURN« LINE FEED CODE
TYPE CARRIAGE RETURN* LINE FEED
GET 201 TASK STATE
FORM ACK PENDING STATE
SET NEW 201 TASK STATE
GET ALLOCATION MASK
SET BFTTY ALLOACTION MASK
RELEASE TELEPRINTER
ACKNOWLEDGE RECORD

GET RECEIVED CHARACTER
SHIFT INTO POSITION
TRUNCATE HIGH ORDER BITS
STATE VARIABLE
SKIP IF NOT SYN
FIND NEXT SYN t CHANGE STATE
IGNORE CHARACTER
READ 201 STATUS
GET TEXT BIT
CLEAR TEXT BIT
GET JMP IFI1 INSTRUCTION
MODIFY INTERRUPT SERVICE
CLEAR 201 FLAGS
RETURN FROM INTERRUPT
SKIP IF NOT SYN
IGNORE SYN
SKIP IF NOT OLE (EVEN PARITY)
BUFFER RECEIVED RECORD
GET NOP INSTRUCTION
MODIFY INTERRUPT SERVICE
GET JMP IFI2 INSTRUCTION

A-51

JMP IFI1-3
IFI2 SAD «BFDLE

JMP IFI3-2
SAD «BFDLE-200
JMP IFI3-2
JMS BFIS
JMP IFII-2
LAC »600000+IFI3
JMP IFI1-3

IFI3 SAD »BFDLE
JMP IFI31-3
SAD ■BFDLE-200
JMP IFI31-3
SAD «BFSYN
JMP IF131-2
DAC BFEOR
SAD «BFACK
JMP IFI31
SAD »BFNAK
JMP IFI32
XQR «760000
JMS BFIS
LAC »600000+1FI4
JMP IFII-3
JMS BFIS
LAC »600000MFI2
JMP IFII-3

IFI31 LAC »BFOB
DAC BFOI
LAC BFS
AND »06
DAC BFS
LAC »740000
JMP IFII-3

IFI32 LAC BFS
XQR «21
DAC BFS
LAC »BFXMT
JMS Til
JMP IFI32-2

MODIFY INTERRUPT SERVICE
SKIP IF NOT OLE (EVEN PARITY)
CHANGE STATE FOR NEXT CHARACTER
SKIP IF NOT OLE (ODD PARITY)
CHANGE STATE FOR NEXT CHARACTER
PUT CHARACTER IN BUFFER
CLEAR FLAGS AND RETURN
GET JMP IFI3 INSTRUCTION
MODIFY INTERRUPT SERVICE
SKIP IF NOT OLE (EVEN PARITY)
PUT DLE IN BUFFER
SKIP IF NOT DLE (ODD PARITY)
PUT DLE IN BUFFER
SKIP IF NOT SYN
IGNORE SYN
SAVE END-OF-RECORD CHARACTER
SKIP IF NOT ACK
CLEAR OUTPUT BUFFER
SKIP IF NOT NAK
RETRANSMIT LAST DATA RECORD
INDICATE END-OF-RECORD CHARACTER
PUT CHARACTER IN BUFFER
GET JMP IFI4 INSTRUCTION
MODIFY INTERRUPT SERVICE
PUT DLE CHARACTER IN BUFFER
GET JMP IFI2 INSTRUCTION
MODIFY INTERRUPT SERVICE
GET ADDRESS OF OUTPUT BUFFER
RESET INPUT POINTER
GET 201 TASK STATE
INDICATE ACK NOT EXPECTED
STORE NEW TASK STATE
GET NOP INSTRUCTION
MODIFY INTERRUPT SERVICE
GET 201 TASK STATE
FORM STATE FOR RETRANSMISSION
STORE NEW TASK STATE
GET ADDRESS OF TRANSMISSION TASK
SCHEDULE TRANSMISSION
MODIFY INTERRUPT SERVICE

A-52

IFI4

IF15

IFI51

IFI 6

1F0

IFOI

CLL
ALS 10
DAC BFCKR
LAC ■600000+IFI5
JMP IFII-3
XOR BFCKR
SAO BFCK
JHP 1FI51
LAC «BFIB
DAC BFII
DAC BFIO
LAC BFS
XQR ■ 10
DAC BFS
JMP IFI 4-3
LAC BFS
XOR ■8
DAC BFS
LAC BFEOR
JMS BFENOS
LAC BFIB
SNA
JMP IFI32-2
LAC ■BFTTY
JMP IFI 4-2
IOT 1412
AND «2000
IOT 1404
JMP IFI1-2

HLT
SAD >760000*BFSYN
JMP IFOI
SAD 3760000+BFDLC
JMP IF03
SMA
JMP IF04
JMP IF05
ISZ BFC
JMP IF02+2

PREPARE TO SHIFT ZEROS INTO AC
SHIFT HIGH ORDER CHECK INTO POSITION
SAVE HIGH ORDER BLOCK CHECK
GET JMP IFI5 INSTRUCTION
MODIFY INTERRUPT SERVICE
FORM COMPLETE BLOCK CHECK
SKIP IF BAD RECORD
INDICATE INPUT BUFFER FULL
GET ADDRESS OF INPUT BUFFER
RESET INPUT POINTER
RESET OUTPUT POINTER
GET 201 TASK STATE
INDICATE NAK PENDING
SET NEW 201 TASK STATE
SCHEDULE TRANSMISSION TASK
GET 201 TASK STATE
INDICATE INPUT BUFFER FULL
SET NEW 201 TASK STATE
GET END-OF-RECORD CHARACTER
PROCESS ENQUIRY« IF PRESENT
GET FIRST RECEIVED CHARACTER
SKIP IF UNSOLICITED RECORD
MODIFY INTERRUPT SERVICE
GET ADDRESS OF BYPASS TASK
SCHEDULE BYPASS TASK
READ 201 STATUS
GET TEXT BIT
CLEAR TEXT BIT
CLEAR FLAGS AND RETURN

STATE VARIABLE
SKIP IF NOT SYN
SYN SENT LAST TIME
SKIP IF NOT OLE
OLE SENT LAST TIME
SKIP IF END-OF-RECORD CHARACTER
TEXT CHARACTER SENT LAST TIME
ENTER BLOCK CHECK PROCEDURE
SKIP IF LAST SYN SENT
CLEAR FLAGS AND RETURN

A-53

LAC =BFDLE
SKP

1F02 LAW BFDLE
OAC 5
IOT 1442
JMP IR

IF03 LAC^ BFOO
JMS BFCKS
LAC BFOO
SAD «BFOB
DZM BFCK
LAC* BFOO
ISZ BFOO
JMP IF02*I

IF04 LAC* BFOO
SAD «BFDLE
JMP IF02
SAD «BFOLC-200
JMP IF02
SMA
JMP IF03+1
AND «377
JMS BFENQS
JMP IF02

IF05 LAC »600000+IFO6
DAC IFO
LAC BFCK
LRS 10
JMP IF02M

IF06 LAC =600000+IFO7
DAC IFO
LAC BFCK
JMP IF02+1

IF07 LAC =600000*1F08
DAC IFO
CLC
JMP IF02+I

I FOB IOT 1412
AND «20000
IOT 1404

GET INITIAL DLE
SET TRANSMIT IMAGE
GET DLE CHARACTER
SET TRANSMIT IMAGE
CLEAR 201 FLAGS
RETURN FROM INTERRUPT
GET CHARACTER FROM BUFFER
UPDATE BLOCK CHECK
GET OUTPUT POINTER
SKIP IF NOT FIRST CHARACTER
CLEAR BLOCK CHECK
GET CHARACTER FROM OUTPUT BUFFER
INCREMENT OUTPUT POINTER
TRANSMIT CHARACTER
GET CHARACTER FROM BUFFER
SKIP IF NOT DLE (EVEN PARITY)
PRECEDE WITH DLE
SKIP IF NOT DLE CODD PARITY)
PRECEDE WITH DLE
SKIP IF END OF RECORD
SEND CHARACTER FROM BUFFER
TRUNCATE HIGH ORDER BITS
PROCESS ENQUIRY« IF PRESENT
PRECEDE WITH DLE
GET JMP IF06 INSTRUCTION
MODIFY INTERRUPT SERVICE
GET BLOCK CHECK
SHIFT HIGH ORDER PART INTO POSITION
TRANSMIT HIGH ORDER BLOCK CHECK
GET JMP INSTRUCTION
MODIFY INTERRUPT SERVICE
GET BLOCK CHECK
TRANSMIT LOW ORDER PART
GET JMP I FOB INSTRUCTION
MODIFY INTERRUPT SERVICE
GET PAD CHARACTER
TRANSMIT PAD
READ 201 STATUS
GET XMT REG BIT
CLEAR XMT REQ BIT

A-54

JMP IF02*2 CLEAR 201 FLAGS AND RETURN

BFENGS SDC 0
SAD »BFENO
JMP •♦4
SAD «BFEOT
SKP
JMP* BFENOS
LAC «BFOB
DAC BFOI
LAC >BFIB
DAC BFII
DAC BF|0
DZM BFIB
DZM EPS
LAC «740000
DAC IFI + 3
JMP* BFENOS

SKIP IF NOT ENQUIRY
PROCESS ENQUIRY
SKIP IF NOT END-OF-TRANSMISSION
REGARD AS ENQUIRY
RETURN
GET ADDRESS OF OUTPUT BJFFER
RESET INPUT POINTER
GET ADDRESS OF INPUT BUFFER
RESET INPUT POINTER
RESET OUTPUT POINTER
DO NOT SCHEDULE BYPASS TASK
STOP 201 TASK ACTIVITY
GET NOP INSTRUCTION
MODIFY INTERRUPT SERVICE
RETURN

BFIS SDC 0
DAC* BFII
JMS EFCKS

BFII
• BFIB
BFCK
BFII
BFIS

LAC
SAD
DZM
ISZ
JMP*

PUT CHARACTER IN INPUT BUFFER
UPDATE BLOCK CHECK
GET INPUT POINTER
SKIP IF INPUT BUFFER NON-EMPTY
CLEAR BLOCK CHECK
INCREMENT INPUT POINTER
RETURN

BFCKS SDC 0
DAC 23
LAW -10
DAC 24
LAC BFCK

BFCKS1 RCR
DAC BFCK
CLO
LAC 23
LRS 1
DAC 23
LACO

SAVE CHARACTER
LOAD AC WITH -8
SET COUNTER
GET FORMER BLOCK CHECK
ROTATE LOW ORDER BIT INTO LINK
STORE NEW LOW ORDER IS BITS
PREPARE TO GET LOW ORDER CHAR BIT
GET CHARACTER REMAINS
SHIFT LOW ORDER BIT INTO MQ
STORE CHARACTER REMAINS
GET LOW ORDER CHARACTER BIT

I

A-55

SZA
cm.
LAC BPCK
SZL
XOR «120001
ISZ 24
JMP BFCKS1
DAC BFCK
JMP* BFCKS

BFIB SDS 200

BFOB SOS 200

SKIP IF NOT SET
OR CHECK BIT WITH CHARACTER BIT
GET LOW ORDER 15 BITS OF CHECK
SKIP IF LOW ORDER BIT WAS 0
INVERT FEEDBACK BITS
INCREMENT COUNT A SKIP IF DONE
PROCESS NEXT CHARACTER BIT
STORE NEW BLOCK CHECK
RETURN

A-56

STITLE READER BUFFER MANAGER

BR1

BR2

LAC BRO
SNA
JMP PR2
SAD BRI
JMP BRI
LAC* BRO
ISZ BRO
SNA
DZM BRO
ISZ B.R
JMP* B.R
SAD «BRO*200
JMP BR2
IOT 314
AND «1000
SNA
JMP BR2-1
DZM BRO
JMP* B.R
JMP BR
JMS T.P
LAC »BRQ
DAC BRI
DAC BRO
IOT 104
JMP BR2-1

GET OUTPUT POINTER
SKIP IF NOT START OF NEW RECORD
CLEAR BUFFER A START READER
SKIP IF BUFFER NOT EMPTY
WAIT FOR MORE INPUT
GET IMAGE FROM BUFFER
INCREMENT OUTPUT POINTER
SKIP IF NOT END OF RECORD
INDICATE NEW RECORÜ NEEDED
INDICATE SUCCESS
RETURN
SKIP IF NOT END OF BUFFER
CLEAR BUFFER & START READER
READ STATUS
GET READER OUT-OF-TAPE FLAG
SKIP IF READER OUT OF TAPE
SCHEDULE NEW ATTEMPT
INDICATE NEW RECORD NEEDED
RETURN
TRY AGAIN TO GET IMAGE
SCHEDULE NEW ATTEMPT
GET ADDRESS OF READER BUFFER
SET INPUT POINTER
SET OUTPUT POINTER
SELECT READER
SCHEDULE NEW ATTEMPT

IRD IOT 314
AND si000
SZA
JMP IRD1
IOT 112
SZA
JMP IRD2
LAC BRS
SZA
JMP IRD3
JMS BRS

READ STATUS
GET READER OUT-OF-TAPE FLAG
SKIP IF TAPE IS IN READER
READER OUT OF TAPE
READ READER BUFFER
SKIP IF BLANK TAPE
PUT IMAGE IN BUFFER
GET RECORD SEEK SWITCH
SKIP IF END OF RECORD
IGNORE BLANK TAPE
SET RECORD SEEK SWITCH

A-57

BRS SDC 0
DZM* BRI
ISZ BRI
JMP IR

IRDI IOT 102
JMP IR

IRD2 ÜAO BRI
ISZ BRI
DZM BRS
LAC BRI
SAD ■BRO4-200
JMP IR

IR03 IOT 10A
JMP IR

BRQ SDS 200

RECORD SEEK SWITCH
STORE END-OF-RECORD IMAGE
INCREMENT INPUT POINTER
RETURN FROM INTERRUPT
CLEAR READER FLAG
RETURN FROM INTERRUPT
STORE IN READER BUFFER
INCREMENT INPUT POINTER
CLEAR RECORD SEEK SWITCH
GET INPUT POINTER
SKIP IF NOT END OF BUFFER
RFTURN FROM INTERRUPT
SELECT READER
RETURN FROM INTERRUPT

A-58

STITLE PUNCH BUFFER MANAGER

BP DAC BP4
JMS BP2
LAC BPA
LMO
LAC »BPC
JMS O.A
JMP BPI
JMS BP2
ISZ B.P
JMP* B.P

BP1 IOT 314
AND -400
3ZA
JMt'* B.P
SKP
JMP BP+2
JMS T.P

BP2 SDC 0
LAC BP3
SZA
JMP* BP2
LAC «BPO
JMS O.F
JMP* BP2
IOT 204
JMS BP3

BP3 SDC 0
JMP* BP2

I PC IGT 314
AND «400
SZA
JMP I PCI
LAC «BPO
JMS OF!
JMP I PCI
IOT 204

SAVE PUNCH IMAGE
START PUNCH, IF POSSIBLE
GET PUNCH IMAGE
SET UP PUNCH IMAGE AS PARAMETER
GET ADDRESS OF PUNCH BUFFER
PUT PUNCH IMAGE IN BUFFER
PUNCH BUFFER FULL
START PUNCH« IF POSSIBLE
INDICATE SUCCESS
RETURN
READ STATUS
GET PUNCH OUT-OF-TAPE FLAG
SKIP IF PUNCH CONTAINS TAPE
PUNCH OUT OF TAPE
PREPARE TO SCHEDULE NEXT LOCATION
TRY AGAIN TO PUT IMAGE IN BUFFER
SCHEDULE PREVIOUS LOC I TERMINATE

GET PUNCH STATUS SWITCH
SKIP IF PUNCH IS IDLE
PUNCH IS ACTIVE
GET ADDRESS OF PUNCH BUFFER
FETCH IMAGE FROM BUFFER
PUNCH BUFFER EMPTY
SELECT PUNCH
SET PUNCH STATUS SWITCH
PUNCH STATUS SWITCH
RETURN

READ STATUS
GET PUNCH OUT-OF-TAPE FLAG
SKIP IF PUNCH CONTAINS TAPE
PUNCH OUT OF TAPE
GET ADDRESS OF PUNCH BUFFER
GET IMAGE FROM PUNCH BUFFER
PUNCH BUFFER EMPTY
SELECT PUNCH

A-59

IPC1
JMP IR
IOT 202
DZM BP3
JMP IR

RETURN FROM INTERRUPT
CLEAR PUNCH FLAG
INDICATE PUNCH IDLE
RETURN FROM INTERRUPT

BPO SDC
SDS

«♦100
100

A-60

STITLC KEYBOARD BUFFER MANAGER

BK

BKl

1KB

BK6

LAC »BKO
JHS 8.F
JMP BKI
DAC BKF
JMS C.A6
JMP* B.K
JMP BK
JMS T.P

IOT 312
LMO
LAC -BKO
JMS OAt
NOP
JMP IR

IDC ♦♦iee
SOS tie

GET ADDRESS OF KEYBOARD BUFFER
GET CHARACTER FROM KEYBOARD BUFFER
WAIT FOR MORE INPUT
SAVE ASCII FOR SYSTEM USAGE
CONVERT TO 6-BIT CODE
RETURN
TRY AGAIN TO RETURN CHARACTER
SCHEDULE NEW ATTEMPT

READ KEYBOARD BUFFER
SET UP PARAMETER
GET ADDRESS OF KEYBOARD BUFFER
PUT CHARACTER IN BUFFER
BUFFER FULL — IGNORE CHARACTER
RETURN FROM INTERRUPT

A-61

BT OAC BT5
LAC BTS
LMQ
LAC ■BTO
JMS Q.A
JHP BT8
LAC BT1
SZA
JMP* e.T
IOT 2
LAC B.T
DAC B
JMS BT1

BTt SDC B
JMP ITP
JMP BT*I

BT8 JMS T.P

BT9 SDC 77
BT4 SDC 77

ITP LAC BT4
SAO »77
SKP
JMP ITP3
LAC BT3
SAD ■ 77
SKP
JMP ITP4
LAC •BTfi
JMS en
JMP ITP8
DAC BT3
LRS 6
DAC BT4
LRS i

ITPI AND ■77
SAD -77

TELEPRINTER BUFFER MANAGER

SAVE TEMPORARILY
GET PACKED WORD TO BE BUFFERED
SET UP PARAMETER
GET ADDRESS OF TELEPRINTER BUFFER
PUT PACKED MORD INTO TP BUFFER
TRY AGAIN LATER
GET TELEPRINTER STATUS SWITCH
SKIP IF TELEPRINTER IDLE
RETURN
DISABLE INTERRUPTS
GET RETURN ADDRESS
STORE INTERRUPT RETURN
SET TELEPRINTER STATUS SWITCH
TELEPRINTER STATUS SWITCH
FAKE A TELEPRINTER INTERRUPT
TRY AGAIN TO PUT CHAR IN BUFFER
SCHEDULE NEW ATTEMPT

GET SECOND CHARACTER
SKIP IF NOT NULL CHARACTER
LOOK AT THIRD CHARACTER
TYPE SECOND CHARACTER
GET THIRD CHARACTER
SKIP IF NOT NULL CHARACTER
TYPE FIRST CHARACTER
TYPE THIRD CHARACTER
GET ADDRESS OF TELEPRINTER BUFFER
GET PACKED WORD FROM TP BUFFER
CLEAR FLAG A RETURN
SET UP THIRD CHARACTER
SHIFT SECOND CHARACTER INTO PLACE
SET UP SECOND CHARACTER
SHIFT FIRST CHARACTER INTO PLACE
TRUNCATE HIGH ORDER BITS
SKIP IF NOT NULL CHARACTER

A-62

ITP8

ITP3

ITP4

BTO

JMP ITP
TAD -C6AI
MC 83
LAC* 83
IOT 406
JMP 1R
IOT 408
OZM BT1
JMP in
OAC 83
LAC ■ 77
OAC BT4
LAC 83
JMP ITP1
OAC 83
LAC ■ 77
OAC BT3
LAC 83
JMP ITPI

SOC •♦100
SOS 100

TYPE NEXT CHARACTER
AOO AODRESS OP 6-BIT TO ASCII
SAVE TEMPORARILY
6ET CONVERTED ASCII VALUE
SEND CHARACTER TO TELEPRINTER
RETURN PROM INTERRUPT
CLEAR TELEPRINTER FLAG
INDICATE TELEPRINTER IDLE
RETURN PROM INTERRUPT
SAVE TEMPORARILY
GET NULL CHARACTER
STORE AS SECOND CHARACTER
GET CHARACTER TO BE TYPED
TYPE SECOND CHARACTER
SAVE TEMPORARILY
GET NULL CHARACTER
STORE AS THIRD CHARACTER
GET CHARACTER TO BE TYPED
TYPE THIRD CHARACTER

TABLE

-H

JMS TV
SDC N.A
SDC 0
AND ■ 77
IOT 1103
IOT 1304
DZM IAD1
l-AC IAD1
SNA
JMP NA8
LAC NA3
JMS T.U
SDC NA
Jk«. NA1
JMS T.P

JMS TV
SDC N.C
SDC 0
DAG 7
IGT 44
DZM ICKM
LAC ICK*1
SNA
JMP NCI
JMS T.U
SDC NC
JMP • -5
JMS T.P

IGT 5101
JMP 4 ' N.D1

IGT 5100
JMP 4 > N.02

IGT 5104
JMP4 > N.D3

A-63

fTITLE NONBUFFCRCD I/O MANAGER

m JMS TV PROTECT AGAINST REENTRY

TRUNCATE HIGH ORDER BITS
SELECT A/D CONVERTER CHANNEL
SELECT A/D CONVERTER
CLEAR CONVERSION SWITCH
GET CONVERSION SWITCH
SKIP IP CONVERSION COMPLETE
WAIT FOR CONVERSION TO BE COMPLETED
GET CONVERTED VALUE
UNLOCK N.A

CHECK FOR CONVERSION COMPLETE
NA2 JMS T.P SCHEDULE CONVERSION CHECK

NC JMS TV PROTECT AGAINST REENTRY

SET CLOCK INTERVAL
ENABLE CLOCK
CLEAR CLOCK SWITCH
GET CLOCK SWITCH
SKIP IF TIME INTERVAL HAS ELAPSED
WAIT A LITTLE LONGER
UNLOCK N.C

CHECK ELAPSED TIME
NCI JMS T.P SCHEDULE A LATER CHECK

ND1 IGT 5101 SELECT D/A CONVERTER #1
RETURN

ND2 IGT 5100 SELECT D/A CONVERTER #0
RETURN

ND3 IGT 5104 SELECT D/A CONVERTER #3
RETURN

^

A-64

IAD

IAD1

ICK

IOT isie
DAC NA3
JMS IA01
soc e
JMP IR

«IMS ♦♦I
SDC 0
IOT 4
JMP IR

READ A/D CONVERTER
STORE CONVERTED VALUE
SET CONVERSION SWITCH
CONVERSION SWITCH
RETURN PROM INTERRUPT

SET CLOCK SWITCH
CLOCK SWITCH
CLEAR CLOCK PLAG
RETURN PROM INTERRUPT

—

•

—•

A-65

STITLC PUSH BUTTON PROCESSOR

PT SNA
LAC «PN
OAC PTT
JHP* P.T

PC JMS *♦!
SDC 0
JMP* P.E

PD DZM PE*1
JMP* P.D

PR IOT 631
JMP* P.R

PS IOT 2
JMS PS1
IOT 42
JMP* P.S

PN JMS P.E
JMS T.F

PS1 SDC 0
OAC PRO
LRS 6
AND «77
TAD «200
IOT 70S
LLS 6
AND "77
TAD »300
IOT 705
JMP* PS1

1PB LAC PE*I
SNA
JMP IPB1

SKIP IF NOT NULL TASK
GET ADDRESS OP NULL TASK
SAVE ADDRESS OF PUSH BUTTON SERVICE
RETURN

SET PUSH BUTTON ENABLE SWITCH
PUSH BUTTON ENABLE SWITCH
RETURN

CLEAR PUSH BUTTON ENABLE SWITCH
RETURN

.<CAD PUSH BUTTONS
RETURN

DISABLE INTERRUPTS
SET PUSH BUTTONS
ENABLE INTERRUPTS
RETURN

ENABLE MANUAL OPN OF PUSH BUTTONS
TERMINATE TASK

STORE NEW PUSH BUTTON STATUS
SHIFT BITS 0-5 INTO POSITION
TRUNCATE HIGH ORDER BITS
SET BITS 0-5 ENABLE BIT
SET PUSH BUTTONS 0-5
SHIFT BITS 6-11 INTO POSITION
TRUNCATE HIGH ORDER BITS
SET BITS 6-11 ENABLE BITS
SET PUSH BUTTONS 6-11
RETURN

GET PUSH BUTTON ENABLE SWITCH
SKIP IF PUSH BUTTONS ARE ENABLED
RESTORE PUSH BUTTON STATUS

A-66

IPB1

LAC PTT
AND ■77777
JMS Til
IOT 631
OAC PR6
OZM PE*I
JMP IR
LAC PRO
JMS PS1
JMP IR

6CT ADDRESS OF PUSH BUTTON SERVICE
TRUNCATE HIGH ORDER BITS
SCHEDULE PUSH BUTTON SERVICE
READ PUSH BUTTONS
MODIFY PUSH BUTTON STATUS WORD
DISABLE PUSH BUTTONS
RETURN FROM INTERRUPT
GET FORMER PUSH BUTTON STATUS
SET PUSH BUTTONS
RETURN FROM INTERRUPT

A-67

DE

STITLE

JMS •♦!
SDC 0
JMP* D.E

DISPLAY COMMUNICATOR

SET DISPLAY INT ENABLE SWITCH
DISPLAY INT ENABLE SWITCH
RETURN

DD

DP

DZM DEM
JMP* D.D

SNA
LAC «DN
DAC DPT
JMP« D.P

DA LAC DS1
LLS 14
AND «70000
XOR DSA
JMP* D.A

DY LAC DS2
LLS 3
AND »10000
XOR DSY
TAD »-J000
JMP* D.Y

DX LAC DS2
LLS A
AND «10000
XOR DSX
TAD «-1000
JMP* D.X

CLEAR INT ENABLE SWITCH
RETURN

SKIP IF NOT NULL SERVICE
GET ADDRESS OF NULL SERVICE
STORE ADDRESS OF SERVICE TASK
RETURN

GET STATUS WORD 1
SHIFT BREAK FIELD INTO POSITION
REMOVE ALL BUT BREAK FIELD
FORM 15-BIT ADDRESS
RETURN

GET STATUS WORD 2
SHIFT HIGH ORDER BIT INTO POSITION
REMOVE OTHER BITS
FORM 13-BIT Y COORDINATE
CONVERT RELATIVE TO SCREEN CENTER
RETURN

GET STATUS WORD 2
SHIFT HIGH ORDER BIT INTO POSITION
REMOVE OTHER BITS
FORM 13-BIT X COORDINATE
CONVERT RELATIVE TO SCREEN CENTER
RETURN

DO AND «77
RCL
CMA
TAD DSP
TAD *PDP2-PDPI-1
DAC Tl

TRUNCATE HIGH ORDER BITS
MULTIPLY PARAMETER BY 2
FORM 1 'S COMPLEMENT
ADD PUSH DOWN POINTER
COMPUTE ADDRESS OF PUSH DOWN ENTRY
SAVE TEMPORARILY

A-68

TAD a-PDP2
SPA
JMP* D.O
LAC* Tl
LLS 3
AND =70000
ISZ Tl
TAD* Tl
TAD «7777
DAC Tl
LAC* Tl
ISZ D.O
JMP* D.O

FORM VALIDITY CHECK
SKIP IF PARAMETER VALID
NOT ENOUGH OWNERS
GET FIRST PUSH DOWN WORD
SHIFT BREAK FIELD INTO POSITION
REMOVE ALL BUT BREAK FIELD
SET POINTER TO SECOND PD ENTRY
COMBINE FIRST I SECOND ENTRIES
FORM ADDRESS IN OWNER OF OWNER
SAVE TEMPORARILY
GET ADDRESS OF DESIRED OWNER
INDICATE SUCCESS
RETURN

ON JMS D.E
JMS T.F

ENABLE DISPLAY INTERRUPTS
TERMINATE TASK

DW

DWT

SDC 0
DZM DWT
LAC DWT
SNA
JMP **3
JMP* DW
JMP DW+2
JMS T.P
SDC 0
LAC DWV
SNA
JMP XIS1
DAC* DWHD
XOR «2000
DAC* DWTL
DZM DWV
JMP XISI

CLEAR DISPLAY READY SWITCH
GET DISPLAY READY SWITCH
SKIP IF SET
WAIT FOR DISPLAY TO FINISH FRAME
RETURN
CHECK DISPLAY READY SWITCH
SCHEDULE NEW SWITCH CHECK
DISPLAY READY SWITCH
GET TRANSLATION VALUE
SKIP IF TRANSLATION PENDING
RESUME DISPLAY * RETURN
STORE DISPLACEMENT
INVERT SIGN BIT
STORE COUNTERDISPLACEMENT
INDICATE TRANSLATION PERFORMED
RESUME DISPLAY « RETURN

ILP LAC DSS
AND »7
SZA
JMP *+5
IOT 611

GET DISPLAY STATUS WORD 1
GET BREAK FIELD
SKIP IF ZERO BREAK FIELD
USER FILE INTERRUPT
READ DISPLAY ADDRESS

•

A-69

IIS

DS

TAD «-XP
SMA
JMP XLP
LAC DE* I
SZA
JMP ♦ ♦3
IOT 724
JMP IR
LAC ÜPT
JMS DS
JMP *-A

LAC DSS
AND «7
SNA
JMP XIS
IOT 611
XOR ■10000
SAD aD+4
JMS DWT
LAC DE+1
SZA
JMP ♦ ♦5
IOT 611
TAD »I
IOT 1605
JMP IR
LAC DSS
LLS 14
AND »70000
IOT 601
DAC 23
LAC4 23
JMS DS
JMP ♦ -13

SDC 0
AND «77777
JMS TII
DZM DE+1

FORM ADDRESS CHECK
SKIP IF USLR FILE INTERRUPT
TRACKING INTERRUPT
GET DISPLAY INT ENABLE SWITCH
SKIP IF DISPLAY INTERRUPTS DISABLED
GET STATUS FOR USER
RESUME DISPLAY
RETURN FROM INTERRUPT
GET ADDRESS OF SERVICE TASK
SCHEDULE SERVICE i READ STATUS
RESUME DISPLAY Ä RETURN

GET DISPLAY STATUS WORD 1
GET BREAK FIELD
SKIP IF USER FILE INTERRUPT
TRACKING INTERRUPT
READ DISPLAY ADDRESS
INTERPRET WITH BREAK FIELD 1
SKIP IF NOT DISPLAY SYNC INTERRUPT
SET DISPLAY READY SWITCH
GET DISPLAY INT ENABLE SWITCH
SKIP IF DISPLAY INTERRUPTS DISABLED
GET STATUS FOR USER
READ DISPLAY ADDRESS
FORM RESUME ADDRESS
RESUME DISPLAY
RETURN FROM INTERRUPT
GET DISPLAY STATUS WORD 1
SHIFT BREAK FIELD INTO POSITION
REMOVE ALL BUT BREAK FIELD
FORM DISPLAY ADDRESS
SAVE TEMPORARILY
GET ADDRESS OF SERVICE TASK
SCHEDULE SERVICE A READ STATUS
RESUME DISPLAY * RETURN

TRUNCATE HIGH ORDER BITS
SCHEDULE SERVICE TASK
DISABLE DISPLAY INTERRUPTS

A-70

LAC DSS
OAC DS1
IOT 1632
DAC DS2
IOT 611
DAC DSA
IOT 1612
DAC DSY
IOT 512
DAC DSX
IOT 511
DAC DSP
LAC «PDP1-1
DAC 10
LAC ■PDP2-1
DAC 11
LAC4 > 10
DAC4 > 11
LAC 10
SAD DSP
JMP« . DS
JMP ♦ -5

GET DISPLAY
SAVE

STATUS

STATUS WORD 1

WORD 2 READ
SAVE
READ DISPLAY ADDRESS
SAVE
READ Y DISPLAY COORDINATE
SAVE
READ X DISPLAY COORDINATE
SAVE
READ PUSH DOWN POINTER
SAVE
GET ADDRESS OF PUSH DOWN LIST
SET AUTOINDEX REGISTER
GET MDDRESS OF PUSH DOWN SAVE AREA
SET AUTOINDEX REGISTER
GET WORD FROM PUSH DOWN LIST
STORE IN PUSH-DOWN SAVE AREA
GET SOURCE POINTER
SKIP IF NOT END OF LIST
RETURN
COPY NEXT WORD

I

A-71

STITLE TRACKING CONTROLLER

XI TAD a 1000
AND «1777
DAC XPY
LACO
TAD «1000
AND «1777
XOR «4000
DAC XPX
DZM XP
JMP* X.I

CONVERT RELATIVE TO ORIGIN
CONVERT MODULO 2t10
SET Y TRACKING COORDINATE
GET X COORDINATE
CONVERT RELATIVE TO ORIGIN
CONVERT MODULO 2*10
SET ESCAPE BIT
SET X TRACKING COORDINATE
ENABLE TRACKING
RETURN

XR

XT

DZM XP
JMP* X.R

LAW 3000
DAC XP
JMP* X.T

ENABLE
RETURN

TRACKING

GET POP INSTRUCTION
TERMINATE TRACKING
RETURN

XS LAW 3000
SAD XP
ISZ X.S
JMP* X.S

GET POP INSTRUCTION
SKIP IF TRACKING ENABLED
INDICATE SUCCESS
RETURN

XY LAC XPY
TAD =-1000
J*?* X.Y

GET Y TRACKING COORDINATE
CONVERT RELATIVE TO SCREEN CENTER
RETURN

XX LAC XPX
AND «1777
TAD =-1000
JMP* X.X

GET X TRACKING COORDINATE
TRUNCATE ESCAPE
CONVERT RELATIVE TO SCREEN CENTER
RETURN

XLP HLT
HLT
HLT
JMP **3
AND «1777
DAC XPY

STATE VARIABLE
STATE VARIABLE
STATE VARIABLE
DO NOT CHANGE Y TRACKING COORDINATE
TRUNCATE HIGH ORDER BITS
SET Y TRACKING COORDINATE

A-72

IOT 512
TAD =-2000
SMA
JMP ♦ ♦4
AND ■ 1777
XOR ■ 4000
DAC XPX
LAW XP
IOT 1605
JMP IR

XLPI IOT 724
JMP IR

XIS IOT 611
DAC ^3
LAC* 23
DAC 23
JMP* 23

XISI IOT 611
TAD ■1
IOT 1605
JMP IR

XI LAW 3000
DAC XPS
LAC ■700512
DAC XLP
LAC ■40000+XL
DAC XLP+1
LAC «600000+XLP1
DAC XLP+2
DZM XL
DZM XH
JMP XISI

X2 LAC ■400004XH
DAC XLP+1
JMP XISI

X3 LAC XH

READ X COORDINATE
SUBTRACT 1024
SKIP IF COORDINATE ON SCREEN
DO NOT CHANGE X COORDINATE
TRUNCATE HIGH ORDER BITS
SET ESCAPE BIT
SET X TRACKING COORDINATE
GET ADDRESS OF TRACKING PATTERN
RESTART TRACKING PROCESS
RETURN FROM INTERRUPT
RESUME DISPLAY
RETURN

READ DISPLAY ADDRESS
SAVE TEMPORARILY
GET ADDRESS OF SERVICE
SAVE TEMPORARILY
SERVICE INTERRUPT
READ DISPLAY ADDRESS
FORM RESUME ADDRESS
RESUME DISPLAY
RETURN FROM INTERRUPT

GET POP INSTRUCTION
INHIBIT SEARCH PATTERN
GET IOT 512 INSTRUCTION
MODIFY INTERRUPT SERVICE
GET DAC XL INSTRUCTION
MODIFY INTERRUPT SERVICE
GET JMP XLPI INSTRUCTION
MODIFY INTERRUPT SERVICE
CLEAR LOW COORDINATE
CLEAR HIGH COORDINATE
RESUME DISPLAY « RETURN

GET DAC XH INSTRUCTION
MODIFY INTERRUPT SERVICE
RESUME DISPLAY 1 RETURN

GET HIGH COORDINATE

A-73

X31

X4

X41

SNA
JMP X3I
TAD XL
SAD XH
JMP X31
RCR
TAD «-2000
SMA
JMP X31+2
AND »1777
XOR «4000
DAC XPX
JMP X31+2
LAW 777
DAC XPS
DZM XL
DZM XH
LAC «701612
DAC XLP
LAC »400004-XL
DAC XLP+1
JMP XIS1

LAC XH
SNA
JMP X41
TAD XL
SAD XH
JMP X4I
RCR
TAD «-2000
SMA
JMP X41+2
AND «1777
DAC XPY
JMP X41+2
LAW 777
DAC XPS
LAC XLP* 7
DAC XLP+1

SKIP IF VALID
ENABLE SEARCH PATTERN
ADD LOW COORDINATE
SKIP IF VALID
ENABLE SEARCH PATTERN
DIVIDE BY 2
SUBTRACT 1024
SKIP IF COORDINATE ON SCREEN
DO NOT CHANGE X COORDINATE
CONVERT MODULO 2t10
SET ESCAPE BIT
SET X TRACKING COORDINATE
LEAVE SEARCH PATTERN INHIBITED
GET SEARCH ENABLE WORD
ENABLE SEARCH PATTERN
CLEAR LOW COORDINATE
CLEAR HIGH COORDINATE
GET 10T 1612 INSTRUCTION
MODIFY INTERRUPT SERVICF
GET DAC XL INSTRUCTION
MODIFY INTERRUPT SERVICE
RESUME DISPLAY i RETURN

GET HIGH COORDINATE
SKIP IF NOT VALID
ENABLE SEARCH PATTERN
ADD LOW COORDINATE
SKIP IF VALID
ENABLE SEARCH PATTERN
DIVIDE BY 2
SUBTRACT 1024
SKIP IF COORDINATE ON SCREEN
DO NOT CHANGE Y TRACKING COORDINATE
CONVERT MODULO 2t10
SET Y TRACKING COORDINATE
LEAVE SEARCH PATTERN INHIBITED
GET SEARCH ENABLE WORD
ENABLE SEARCH PATTERN
GET TAD «-2000 INSTRUCTION
MODIFY INTERRUPT SERVICE

A-74

LAC «740100
DAC XLP+2
JMP XISI

GET SMA INSTRUCTION
MODIFY INTERRUPT SERVICE
RESUME DISPLAY i RETURN

X5 LAW 3000
DAC XP
JMP XISI

GET POP INSTRUCTION
DISABLE TRACKING
RESUME DISPLAY t RETURN

A-75

STITLE STRUCTURE TOPOLOGY OPERATORS

STL JMS BA
JMP* S.TL
DAC T5
TAD ■-!
DAC 12
LAU e
DAC* 12
DAC* 12
DAC* 12
LAW 1121
DAC* 12
LAW 0
DAC* 12
LAW 4000
DAC* 12
LAW 2001
DAC* 12
JMS 64
JMP STL1
DAC* 12
TAD «-1
DAC 12
LAW 6240
DAC* 12
LAW 1400
DAC* 12
DZM* 12
DZM* 12
LAW 1121
DAC* 12
DZM* 12
LAW 4000
DAC* 12
LAW 3000
DAC* 12
LAC T5
ISZ S.TL
JMP* S.TL

GET 8-WORD BLOCK
NOT ENOUGH STORAGE
SAVE ADDRESS FOR RETURN
COMPUTE INITIAL INDEX VALUE
SET AUTOINDEX REGISTER
GET DISPLAY NOP INSTRUCTION
STORE IN FIRST LOCATION IN HEAD
STORE IN SECOND LOCATION IN HEAD
STORE IN THIRD LOCATION IN HEAD
GET VEC INSTRUCTION
STORE IN FOURTH LOCATION IN HEAD
GET DISPLAY NOP INSTRUCTION
STORE IN FIFTH LOCATION IN HEAD
GET ZERO X COORD WITH ESCAPE BIT
STORE IN SIXTH LOCATION IN HEAD
GET JUMP1 INSTRUCTION
STORE IN SEVENTH LOCATION IN HEAD
GET 8-WORD BLOCK
NOT ENOUGH STORAGE
STORE ADDRESS OF TAIL IN HEAD
COMPUTE INITIAL INDEX VALUE
SET AUTOINDEX REGISTER
GET UNCONDITIONAL DISPLAY SKIP
STORE IN FIRST LOCATION IN TAIL
GET INTERNAL STOP INSTRUCTION
STORE IN SECOND LOCATION IN TAIL
ZERO IN THIRD LOCATION IN TAIL
STORE DISPLAY NOP IN FOURTH LOCATION
GET VEC INSTRUCTION
STORE IN FIFTH LOC IN TAIL
STORE IN SIXTH LOC IN TAIL
GET ZERO X COORD WITH ESCAPE BIT
STORE IN SEVENTH LOCATION IN TAIL
GET POP INSTRUCTION
STORE IN EIGHTH LOC IN TAIL
GET ADDRESS OF CREATED LEVEL
INDICATE SUCCESS
RETURN

A-76

STLI DZM* T5
LAC t

TAD -•
DAC T5
DZM* T5
JMP* S.TL

STD SAD aDHAL
JMP STD1
DAC TI
TAD »A
DAC T2
TAD a3
DAC T3
LAC« T3
DAC T3
TAD «4
DAC T4
LAC« T3
AND ■777770
SAD ■762010
JMP* S.TD
DZM* Tl
DZM* T2
DZM* T3
DZM* T4

STD1 ISZ S.TD
JMP* S.TD

STI TAD ■ 7
DAC T5
JMS 83
JMP* S.TI
DAC Tl
TAD ■ -1
DAC 12
LLS 6
AND ■ 7
XOR ■762010
DAC* 12

FREE FIRST 4-WORD BLOCK IN HEAD
GET ADDRESS OF 8-WORD BLOCK
FORM ADDRESS OF SECOND 4-WORD BLOCK
SAVE TEMPORARILY
FREE SECOND 4-WORD BLOCK IN HEAD
FAILURE RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
HIGHEST ACTIVE LEVEL
SAVE ADDRESS OF FIRST HEAD BLOCK
FORM ADDRESS OF SECOND HEAD BLOCK
SAVE ADDRESS OF SECOND HEAD BLOCK
FORM POINTER TO LAST LOC IN HEAD
SAVE TEMPORARILY
GET ADDRESS OF TAIL (OR NODE)
SAVE ADDRESS OF TAIL (OR NODE)
FORM ADDRESS OF SECOND TAIL BLOCK
SAVE
GET FIRST WORD OF TAIL (OR NODE)
TRUNCATE BREAK FIELD
SKIP IF NOT NODE
LEVEL NOT EMPTY
RELEASE FIRST HEAD BLOCK
RELEASE SECOND HEAD BLOCK
RELEASE FIRST TAIL BLOCK
RELEASE SECOND TAIL BLOCK
INDICATE SUCCESS
RETURN

FORM POINTER TO LAST LOC IN HSAD
SAVE
CREATE 4-WORD BLOCK
NOT ENOUGH STORAGE
SET POINTER TO BLOCK
COMPUTE INITIAL INDEX VALUE
SET AUTOINDEX REGISTER
SHIFT BREAK FIELD INTO AC
TRUNCATE HIGH ORDER BITS
FORM PUSH JIWP INSTRUCTION
STORE IN FIRST LOC IN BLOCK

±—-

A-77

AND 37
LLS 14
DAC* 12
LAW 2001
DAC* 12
LAC* T5
DAC* 12
LAC Tl
DAC* T5
ISZ S.TI
JMP* S.TI

TRUNCATE HIGH ORDER BITS
GET COMPLETE ADDRESS
STORE IN SECOND LOC IN BLOCK
GET JUMP1 INSTRUCTION
STORE IN THIRD LOC IN BLOCK
GET ADR OF FIRST ELEMENT IN LEVEL
STORE AS SUCCESSOR TO NEW NODE
GET ADDRESS OF NEW NODE
INSERT NEW NODE INTO LEVEL
INDICATE SUCCESS
RETURN

STR JMS TV
SDC S.TR
SDC 0
TAD «7
DAC Tl
LAC* Tl
DAC T2
DAC STR2
LAC* T2
AND «777770
SAD «762010
SKP
JMP STR1+7
ISZ T2
LACO
SAD* T2
JMP STR1
LAC T2
TAD «2
JMP STR+4

STR1 ISZ T2
ISZ T2
LAC* T2
DAC* Tl
JMS DW
DZM* STR2
ISZ STR+2
JMS T.U

PROTECT AGAINST REENTRY

GET POINTER TO END OF HEAD
SAVE TEMPORARILY
GET ADDRESS OF FIRST ELEMENT
SAVE TEMPORARILY
SAVE ADDRESS FOR REMOVAL
GET FIRST WORD OF FIRST ELEMENT
TRUNCATE BREAK FIELD
SKIP IF NOT NODE
NODE
SUBSTRUCTURE NOT IN LEVEL
FORM POINTER TO ADR OF SUBSTRUCTURE
GET ADDRESS OF GIVEN SUBSTRUCTURE
SKIP IF NO MATCH
SUBSTRUCTURE FOUND
GET POINTER TO ADR OF SUBSTRUCTURE
FORM POINTER TO END OF NODE
TRY NEXT NODE
INCREMENT POINTER TO LOC IN NODE
INCREMENT POINTER TO LOC IN NODE
GET ADR OF SUCCESSOR TO NODE
STORE IN PREVIOUS NODE (OR HEAD)
WAIT FOR DISPLAY TO SETTLE DOWN
RELEASE NODE TO FREE STORAGE
INDICATE SUCCESS
UNLOCK S.TRD

A-78

$DC STR

A-79

STITLE LEVEL MODIFICATION OPERATORS

SLH LAC -DHAL GET ADDRESS OF HIGHEST ACTIVE LEVEL
JMP* S.LH RETURN

SLY JMS TV PROTECT AGAINST REENTRY
SDC S.LY
SDC 9
SAD «DHAL SKIP IF NOT HIGHEST ACTIVE LEVEL
JMP SLY 1*3 RETURN
TAD «4 FORM POINTER TO Y COORD IN HEAD
DAC DWHD SAVE
TAD "3 FORM POINTER TO END OF HEAD
JMS SLT GET ADDRESS OF TAIL
TAD «5 FORM POINTER TO Y COORD IN TAIL
DAC DWTL SAVE
LACO GET Y INCREMENT
JMS C.BC CONVERT TO DISPLAY COORDINATE
XOR «7 66000 INDICATE STORAGE OCCUPIED
DAC DWV SAVE TRANSLATION VALUE

SLY1 LAC DWV GET TRANSLATION VALUE
SZA SKIP IF TRANSLATION COMPLETE
JMP •*A RESCHEDULE COMPLETION CHECK
JMS T.U UNLOCK S.LY
SDC SLY
JMP SLY1 CHECK FOR TRANSLATION COMPLETE
JMS T.P SCHEDULE COMPLETION CHECK

SLX JMS TV PROTECT AGAINST REENTRY
SDC S.LX
SDC 0
SAD «DHAL SKIP IF NOT HIGHEST ACTIVE LEVEL
JMP SLX1+3 RETURN
TAD «5 FORM POINTER TO X COORD IN HEAD
DAC DWHD SAVE
TAD «2 FORM POINTER TO END OF HEAD
JMS SLT GET ADDRESS OF TAIL
TAD »6 FORM POINTER TO X COORE IN TAIL
DAC DWTL SAVE
LACQ GET X INCREMENT

A-80

SLX1

SLP

SLBE

SLBD

JMS CBC
XOR *4000
DAC DWV
LAC DWV
SZA
JMP • ♦4
JMS T.U
SDC SLX
JMP SLX1
JMS T.P

SAO ■ DHAL
JMP« S.LP
TAD ■ 2
DAC Tl
LACC 1
AND ■ 777
DAC« Tl
JMP« S.LP

SAD »DHAL
JMP« S.LBE
TAD ■I
DAC TB
TAD ■6
JMS SLT
TAD ■3
DAC Tl
LAW 6301
DAC« Tl
LAC« T2
AND ■ 74
TAD ■6302
DAC« T2
JMP« S.LBE

SAD ■ DHAL
JMP« S.LBD
TAD ■ 1
DAC T2

CONVERT TO DISPLAY COORDINATE
SET ESCAPE BIT
SAVE TRANSLATION VALUE
GET TRANSLATION VALUE
SKIP IF TRANSLATION COMPLETE
RESCHEDULE COMPLETION CHECK
UNLOCK S.LX

CHECK FOR TRANSLATION COMPLETE
SCHEDULE COMPLETION CHECK

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN
GET ADDRESS OF PARAMETER SLOT
SAVE TEMPORARILY
GET PARAMETERS
TRUNCATE HIGH ORDER BITS
STORE PARAMETERS IN LEVEL
RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN
FORM POINTER TO COUNT SLOT
SAVE TEMPORARILY
FORM POINTER TO END OF HEAD
GET ADDRESS OF TAIL
FORM POINTER TO BLINK OFF SLOT
SAVE TEMPORARILY
GET BLINK OFF INSTRUCTION
STORE IN TAIL
GET COUNT INSTRUCTION
GET COUNT BITS
FORM NEW COUNT INSTRUCTION
STORE NEW COUNT INSTRUCTION
RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN
FORM POINTER TO COUNT SLOT
SAVE TEMPORARILY

A-81

TAD *6
JMS SLT
TAD «3
DAC Tl
LAC* T2
AND «777774
DAC* T2
DZM* Tl
JMP* S.LBD

FORM POINTER TO END OF HEAD
GET ADDRESS OF TAIL
FORM POINTER TO BLINK OFF SLOT
SAVE TEMPORARILY
GET COUNT INSTRUCTION
FORM NEW COUNT INSTRUCTION
STORE NEW COUNT INSTRUCTION
REMOVE BLINK OFF INSTRUCTION
RETURN

SLC SAD «DHAL
JMP* S.LC
TAD >1
DAC Tl
LAC* Tl
AND «2
DAC T2
LACQ
AND «74
XOR T2
XOR «6300
DAC* Tl
JMP* S.LC

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN
FORM POINTER TO COUNT SLOT
SAVE TEMPORARILY
GET COUNT INSTRUCTION
GET BLINK BIT
SAVE TEMPORARILY
GET COUNT BITS
TRUNCATE OTHER BITS
CONCATENATE COUNT BITS « BLINK BIT
FORM NEW COUNT INSTRUCTION
STORE NEW COUNT INSTRUCTION
RETURN

SLU SAD «DHAL
JMP* S.LU
JMS S.LN
DAC* Tl
JMP* S.LU

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN
REMOVE INTERRUPT AT END OF LEVEL
REMOVE SKIP INSTRUCTION FROM TAIL
RETURN

SLS SAD «DHAL
JMP* S.LS
JMS S.LN
LAW 6220
DAC* Tl
JMP* S.LS

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN
REMOVE INTERRUPT AT END OF LEVEL
GET SK1P-IF-OFF-SCREEN INSTRUCTION
STORE IN TAIL
RETURN

SLL SAD «DHAL
JMP* S.LL
JMS SLSP

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN
REMOVE INTERRUPT FROM END OF LEVEL

A-82

.

SLN

LAW 6201
DAG* T2
LAW 6202
DAC* Tl
JMP* S.LL

SAD "DMAL
JMP* S.LN
JMS SLSP
LAW 0
DAC* T2
JMP* S.LN

GET LPSI CLEAR INSTRUCTION
STORE IN HEAD
GET SKIP-ON-NO-LPSI INSTRUCTION
STORE IN TAIL
RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN
REMOVE INTERRUPT AT END OF LEVEL
GET DISPLAY NOP INSTRUCTION
REMOVE LPSI CLEAR
RETURN

SLT SDC 0
DAC Tl
LAC* Tl
DAC Tl
LAC* Tl
AND «777770
SAD «762010
JMP **3
LAC Tl
JMP* SLT
LAC Tl
TAD «3
JMP SLT*1

STORE POINTER TO END OF BLOCK
GET POINTER TO NEXT NODE (OR TAIL)
SAVE TEMPORARILY
GET FIRST WORD FROM NODE (OR TAIL)
TRUNCATE BREAK FIELD
SKIP IF NOT NODE
TAIL NOT FOUND
GET ADDRESS OF TAIL
RETURN
GET POINTER TO NODE
FORM POINTER TO END OF NODE
LOOK AT NEXT NODE (OR TAIL)

SLSP SDC 0
DAC T2
TAD «7
JMS SLT
TAD «2
DAC T3
LAW 6240
DAC* Tl
LACQ
DAC* T3
JMP* SLSP

SAVE ADDRESS OF LEVEL
FORM POINTER TO END OF HEAD
GET ADDRESS OF TAIL
FORM POINTER TO TASK ADDRESS
SAVE TEMPORARILY
GET SKIP INSTRUCTION
STORE IN TAIL
GET NEW SERVICE TASK ADDRESS
STORE IN TAIL
RETURN

'

DAC LT8
LAC* LT2
CNA
DAC LT3
ISZ LT3
SKP
JMP* L.T
ISZ LT8
LAC* LT2
JMS B.T
ISZ LT3
JMP LTI
JMP* L.T

DAC T5
DAC Tl
LAC* Tl
CMA
DAC 12
LAC ■ 7
DAC T3
ISZ T2
SKP
JMP LD4
ISZ Tl
LAC4 ■ Tl
LRS 14
JMS LDS
JMS LD5
JMS LDS
ISZ T2
JMP LD1
LAC T3
RCR
RCR
JMS B
JMP 4 i «..0
DAC Tl

A-83

STITLE TEXT OPERATORS

LT DAC LT8 SAVE ADDRESS OF TEXT LIST
GET TEXT WORD COUNT
FORM 1*S COMPLEMENT
STORE COMPLEMENTED WORD COUNT
FORM 2*S COMPLEMENT OF WORD COUNT
WORD COUNT NOT ZERO
RETURN

LTI ISZ LT2 SET POINTER TO NEXT TEXT WORD
GET TEXT WORD
SEND TO TELEPRINTER BUFFER
INCREMENT COUNT < SKIP IF DONE
PROCESS NEXT TEXT WORD
RETURN

LD DAC TS SAVE ADDRESS OF TEXT LIST
SET POINTER TO TEXT LIST
GET WORD COUNT
FORM 1*S COMPLEMENT
STORE COMPLEMENTED WORD COUNT
GET INITIAL VALUE OF LEAF LENGTH
SET INITIAL VALUE OF LEAF LENGTH
FORM 2*S COMPLEMENT OF WORD COUNT
WORD COUNT NOT ZERO
RETURN NULL TEXT LEAF

LD1 ISZ Tl SET POINTER TO NEXT TEXT WORD
GET TEXT WORD
SHIFT FIRST CHARACTER INTO POSITION
MODIFY LEAF LENGTH COUNT
MODIFY LEAF LENGTH COUNT
MODIFY LEAF LENGTH COUNT
INCREMENT WORD COUNT « SKIP IF DONE
PROCESS NEXT TEXT WORD
GET SIZE OF TEXT LEAF
DIVIDE BY 2
DIVIDE BY 2
GET STORAGE FOR TEXT LEAF
NOT ENOUGH STORAGE
SAVE ADDRESS OF TEXT LEAF AREA

A-84

DAC T6
LAC« • T5
CHA
TAD ■1
DAC T8
DZM T3
DZH T4

LD2 1SZ T5
LAC« i T5
LRS 14
JMS LD6
JMS LD6
JMS LD6
ISZ T2
JMP LD2
LAW 1121
DAC« ' Tl
ISZ Tl
LAC T4
CLO
LLS 4
XQR ■400000
DAC* Tl
ISZ Tl
LAC T3
LLS 3
AND ■ 1777
XQR ■ 6000
DAC« • Tl
ISZ Tl

LD3 LAW 3000
DAC« • Tl
LAC T6
ISZ L.D
JMP« > L.D

LD4 LAC ■LD3
JMP • -3

LD5 SDC 0
AND ■ 77

SAVE ADDRLSS FOR RETURN
GET WORD COUNT
FORM 1*S COMPLEMENT
FORM 2*S COMPLEMENT
STORE COMPLEMENTED WORD COUNT
CLEAR HORIZONTAL COUNT
CLEAR VERTICAL COUNT
SET POINTER TO NEXT TEXT WORD
GET NEXT TEXT WORD
SHIFT FIRST CHARACTER INTO POSITION
PUT FIRST CHARACTER INTO LEAF
PUT SECOND CHARACTER INTO LEAF
PUT THIRD CHARACTER INTO LEAF
INCREMENT COUNT I SKIP IF DONE
PROCESS NEXT TEXT WORD
GET VEC INSTRUCTION
STORE IN TEXT LEAF
INCREMENT POINTER TO LOC IN LEAF
GET VERTICAL COUNT
PREPARE TO SHIFT ZEROS INTO AC
MULTIPLY BY 16
SET TO NONZERO VALUE
STORE IN TEXT LEAF
INCREMENT POINTER TO LOC IN LEAF
GET HORIZONTAL COUNT
MULTIPLY BY 8
CONVERT MODULO 2»10
SET ESCAPE BIT I MINUS SIGN
STORE IN TEXT LEAF
INCREMENT POINTER TO LOC IN LEAF
GET POP INSTRUCTION
STORE IN TEXT LEAF
GET ADDRESS OF TEXT LEAF
INDICATE SUCCESS
RETURN
GET ADDRESS OF POP INSTRUCTION
INDICATE SUCCESS « RETURN

TRUNCATE HIGH ORDER BITS

A-85

LD6

SAD ■ 77
JHP ♦ ♦5
SAD -74
ISZ T3
ISZ T3
ISZ T3
LLS 6
JMP* LDS

SDC 0
AND ■ 77
SAD ■ 77
JHP LD7-2
SAD ■ 74
JMP LD7
SAD ■ 75
SKP
JMP ♦ ♦3
ISZ T4
SKP
ISZ 13
TAD ■LD8
OAC T7
LAW 2010
DAC« ' Tl
ISZ Tl
LAC 4 • T7
DAC< • Tl
ISZ Tl
LLS 6
JMP« > LD6
LACC »
DAC T7
LAW 1121
DAC« • Tl
ISZ Tl
LAW 0
DAC« - Tl
ISZ Tl
LAC T3

SKIP IF NOT NULL CHARACTER
NULL CHARACTER •• RETURN
SKIP IF NOT CARRIAGE RETURN
INCREMENT LEAF SIZE EXTRA TIME
INCREMENT LEAF SIZE
INCREMENT LEAF SIZE
SHIFT NEXT CHARACTER INTO POSITION
RETURN

TRUNCATE HIGH ORDER BITS
SKIP IF NOT NULL CHARACTER
NULL CHARACTER — RETURN
SKIP IF NOT CARRIAGE RETURN
PUT CARRIAGE RETURN INTO LEAF
SKIP IF NOT LINE FEED
LINE FEED -• INCREMENT VERT COUNT
NORMAL CHARACTER
INCREMENT VERTICAL COUNT
LEAVE HORIZONTAL COUNT ALONE
INCREMENT HORIZONTAL COUNT
ADD ADDRESS OF CONVERSION TABLE
SAVE TEMPORARILY
GET PUSH JUMP INSTRUCTION
STORE IN TEXT LEAF
INCREMENT POINTER TO LOC IN LEAF
GET ADDRESS OF DISPLAY FOR CHAR
STORE IN TEXT LEAF
INCREMENT POINTER TO LOC IN LEAF
SHIFT NEXT CHARACTER INTO POSITION
RETURN

LD7 LACQ GET MO CONTENTS
SAVE TEMPORARILY
GET VEC INSTRUCTION
STORE IN TEXT LEAF
INCREMENT POINTER TO LOC IN LEAF
GET ZERO Y DISPLACEMENT
STORE ZERO Y DISPLACEMENT IN LEAF
INCREMENT POINTER TO LOC IN LEAF
GET HORIZONTAL DISPLACEMENT

A-86

CLO
LLS 3
AND «1777
XOR *W99
DAC* Tl
ISZ Tl
DZM T3
LAC T7
LRS 14
JMP* LD6

PREPARE TO SHIFT ZEROS INTO AC
MULTIPLY BY 8
CONVERT MODULO 2*10
SET ESCAPE BIT * MINUS SIGN
STORE IN TEXT LEAF
INCREMENT POINTER TO LOC IN LEAF
CLEAR HORIZONTAL COUNT
GET PREVIOUS MO CONTENTS
SHIFT NEXT CHARACTER INTO POSITION
RETURN

DAC Tl
LAC* Tl
DZM* Tl
SAD ■763000
JMP* L.L
ISZ Tl
JMP LL*1

STORE ADDRESS OF TEXT LEAF
GET VALUE FROM LEAF
FREE STORAGE LOCATION
SKIP IF NOT END OF TEXT LEAF
RETURN
SET POINTER TO NEXT LOC IN LEAF
FREE NEXT LOCATION

LD8 SDC D00
SDC 001*10000
SDC 002*20000
SDC 003*30000
SDC 004*40000
SDC 005*50000
SDC D06'ö0000
SDC D07i70000
SDC 010*100000
SDC 011*110000
SDC 012*120000
SDC D13*130000
SDC 014*140000
SDC 015*150000
SDC Dl6*160000
SDC 017*170000
SDC 020*200000
SDC 021*210000
SDC 022*220000
SDC 023*230000
SDC 024*240000

A-87

SDC D25*250e00
SDC D26*260000
SDC 027*270000
SDC D30+300000
SDC D31*310000
SDC 032*320000
SDC 033*330000
SDC 034*340000
SDC 035*350000
SDC 036*360000
SDC 037*370000
SDC 040*400000
SDC 041*410000
SDC 042*420000
SDC 043*430000
SDC 044*440000
SDC 045*450000
SDC 046*460000
SDC 047*470000
SDC 050*500000
SDC 051*510000
SDC 052*520000
SDC 053*530000
SDC 054*540000
SDC 055*550000
SDC 056*560000
SDC 057*570000
SDC 060*600000
SDC 061*610000
SDC 062*620000
SDC 063*630000
SDC 064*640000
SDC 065*650000
SDC 066*660000
SDC 067*670000
SDC 070*700000
SDC 071*710000
SDC 072*720000
SDC 073*730000
NOP

A-88

SDC 07 5*7 50000
SDC 076*7 60000

A-89

STITLE IDLE-TIME TASK

IDLE LAW 17475
JMS B.T
LAW 10
JMS T.R
JMS B.K
DAC T3
LAW 10
JMS T.A
LAC BKF
SAD "205
JMP TTY4
LAC T3
SAD "14
LAC »IDLEC
SAD «33
LAC "IDLER
SAD «34
LAC «IDLES
SAD «72
LAC «IDLE1
SAD «17
LAC «IDLEF
DAC T3
AND «777700
SNA
JMP IDLEQ
LAC T3
TAD «1
JMS L.T
LAC* T3
DAC T3
JMP* T3

GET CARRIAGE RETURN« LINE FEED CODE
TYPE CARRIAGE RETURN« LINE FEED
GET TELEPRINTER ALLOCATION MASK
RELEASE TELEPRINTER
GET KEYBOARD CHARACTER
SAVE KEYBOARD CHARACTER
GET TELEPRINTER ALLOCATION MASK
ALLOCATE TELEPRINTER
GET ASCII FORM OF CHARACTER
SKIP IF NOT ENQUIRY
SEND ENQUIRY RECORD
GET KEYBOARD CHARACTER
SKIP IF NOT C
GET -CLEAR" RESPONSE POINTER
SKIP IF NOT R
GET -RUN** RESPONSE POINTER
SKIP IF NOT S
GET "SCHEDULE" RESPONSE POINTER
SKIP IF NOT i
GET TTY/201 RESPONSE POINTER
SKIP IF NOT F
GET "FROM" RESPONSE POINTER
SAVE SELECTED RESPONSE POINTER
TRUNCATE LOW ORDER BITS
SKIP IF LEGAL COMMAND
CANCEL COMMAND
GET RESPONSE POINTER
COMPUTE ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET ADDRESS OF RESPONSE
SAVE TEMPORARILY
EXECUTE RESPONSE

IDLEQ LAC «657475
JMP IDLE+1

GET QUESTION MARK CODE
TYPE « GET NEW COMMAND

IDLEC SDC
SDC

CLEAR
2

A-90

STEXT "CLEAR "
IDLER SDC RUN

SDC 2
STEXT ••RUN"
$DC 747575

IDLES SDC SCHED
SDC 3
STEXT "SCHEDULE

IDLE1 SDC TTY20I
SDC 0

IDLEF SDC FROM
SDC 2
STEXT "FROM "

CLEAR JMS
SAD
JMP
SAD
SKP
JMP
LAC
JMS
LAC
JMS
JMP

CLEAR 1 LAC
JMS
JMS
DZM
JMP

B.K
»15
CLEAR 1
■ 35

IDLEQ
aCLEART
L.T
»SCHEDQ
Q.C
IDLE
«CLEARD
L.T
STC
25
El

GET KEYBOARD CHARACTER
SKIP IF NOT D
CLEAR DISPLAY STORAGE
SKIP IF NOT T
CLEAR TASK QUEUE
CANCEL COMMAND
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET ADDRESS OF FROZEN TASK QUEUE
CLEAR FROZEN TASK QUEUE
GET NEW COMMAND
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
CLEAR DISPLAY STORAGE
INDICATE NO DIAGNOSTIC
RE-ESTABLISH DISPLAYED TITLE

CLEARD SDC 5
STEXT •DISPLAY STORAGE"

CLEART SDC A
STEXT "TASK QUEUE'

RUN LAW 10
JMS T.R
JMS STC

GET TELEPRINTER MASK
RELEASE TELEPRINTER
CLEAR DISPLAY STORAGE

.

A-91

RUN1 LAC »SCHEDO
JMS O.F
JMS T.F
JMS T.S
JMP RUN1

SCHED JMS OCTAL5
JMP IDLEO
LMO
LAC «SCHEDQ
JMS O.A
SKP
JMP IDLE
LAC «SCHED1
JMS L.T
JMP IDLE

SCHED1 SDC 11
STEXT " -- N

SCHEDO SDC ♦ ♦37
$DC ♦ ♦36
SDC ♦ ♦35
SORG ♦♦35

TTY201 LAW 17772
JMS B.T
JMS ECHO
LAC BKF
SAD »215
JMP TTY1
SAD ■ 337
JMP TTY2
SAD ■ 377
JMP TTY3
JMS B.FO
SKP
JMP TTY201^2
LAC aTTY5
JMS L.T

GET ADDRESS OF FROZEN TASK QUEUE
GET TASK FROM FROZEN TASK QUEUE
TERMINATE IDLE-TIME EXECUTION
SCHEDULE TASK FROM FROZEN QUEUE
ENABLE NEXT TASK

GET ADDRESS FROM KEYBOARD
CANCEL COMMAND
SET UP PARAMETER
GET ADDRESS OF FROZEN TASK
ADD TASK TO FROZEN QUEUE
TYPE DIAGNOSTIC
GET NEW COMMAND
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET NEW COMMAND

QUEUE

NO ROOM FOR THIS TASK"

GET # CODE
TYPE #
ECHO KEYBOARD CHARACTER
GET ASCII FORM OF CHARACTER
SKIP IF NOT CARRIAGE RETURN
TERMINATE RECORD WITH ETX
SKIP IF NOT BACK ARROW
DELETE CHARACTER
SKIP IF NOT RUBOUT
CLEAR 201 OUTPUT BUFFER
SEND CHARACTER TO 201 OUTPUT BUFFER
DATA SET NOT CONNECTED
PROCESS NEXT CHARACTER
GET ADDRESS OF TEXT LIST
TYPE DIAGNOSTIC

A-92

JMP IDLE
TTY1 LAW BFETX

JMS B.PO
JMP ♦ -5
JMP IDLE

TTY2 LAC «BPOB
SAO BFOI
JMP TTY20l*2
JMS B.FO
JMP TTY1-3
LAW -2
TAD BFOI
OAC BFOI
JMP TTY20I+2

TTY3 JMS
NOP

B.FO

LAC «BFOB
OAC BFOI
LAC «TTY6
JMS L.T
JMP IDLE

TTY4 LAW BFENQ
JMP TTY1*1

TTY5 SDC M
STEXT " -- DATA SET

TTY6 SDC 4
STEXT " -- DELETED"

FROM JMS B.K
DZM T3
SAD «14
JMP FROM1
ISZ T3
SAD «31
JMP FR0M2
ISZ T3
SAD «35
JMP FROM 3
JMP IDLEO

GET NEW COMMAND
GET END OF TEXT CHARACTER
SEND TO 201 OUTPUT BUFFER
DATA SET NOT CONNECTED
GET NEW COMMAND
GET ADDRESS OF OUTPUT BUFFER
SKIP IF BUFFER NON-EMPTY
IGNORE CHARACTER DELETE
WAIT FOR ACK TO LAST RECORD
DATA SET NOT CONNECTED
LOAD AC WITH -2
COMPUTE NEW VALUE OF INPUT POINTER
BACKSPACE OUTPUT BUFFER
PROCESS NEXT CHARACTER
WAIT FOR ACK TO LAST RECORD
DATA SET NOT CONNECTED
GET ADDRESS OF 201 OUTPUT BUFFER
RESET INPUT POINTER
GET ADDRESS OF TEXT LIST
TYPE DIAGNOSTIC
GET NEW COMMAND
GET ENQUIRY
SEND TO 201 OUTPUT BUFFER

GET KEYBOARD CHARACTER
CLEAR DATA TRANSFER POINTER
SKIP IF NOT C
FROM CORE
INCREMENT DATA TRANSFER POINTER
SKIP IF NOT P
FROM PAPER TAPE
INCREMENT DATA TRANSFER POINTER
SKIP IF NOT T
FROM TELETYPE
CANCEL COMMAND

A-93

FROMI LAC »FROMC
JMP FROM 4

FR0M2 LAC
SKP

■FROMP

FROM 3 LAC ■FROMT
FROM 4 JMS L.T

LAC T3
CLL*RTL
TAD «FROMI1
DAC T3
LAC «FROMTO
JMS L.T
JMS B.K
SAD «14
JMP FROM 5
ISZ T3
SAD «31
JMP FROM 6
ISZ T3
SAD «35
JMP FROMT
ISZ T3
SAD = 15
JMP FROM8
JMP IDLEO

FROM 5 LAC «FROMC
JMP FR0M9

FROM 6 LAC «FROMP
JMP FROM9

FROM 7 LAC
SKP

«FROMT

FR0M8 LAC »FROMD
FR0M9 JMS L.T

LAC-« ■ T3
DAC T3
JMP< • T3

FROM 11 $DC TRCC
SDC TRCP
$DC TRCT

GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET DATA TRANSFER POINTER
MULTIPLY BY 4
ADD ADDRESS OF TABLE
STORE REFINED DATA TRANSFER POINTER
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET KEYBOARD CHARACTER
SKIP IF NOT C
TO CORE
INCREMENT DATA TRANSFER POINTER
SKIP IF NOT P
TO PAPER TAPE
INCREMENT DATA TRANSFER POINTER
SKIP IF NOT T
TO TELETYPE
INCREMENT DATA TRANSFER POINTER
SKIP IF NOT D
TO DISPLAY
CANCEL COMMAND
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET ADDRESS OF DATA TRANSFER
SAVE TEMPORARILY
BEGIN DATA TRANSFER

A-94

$DC TRCD
$DC TRPC
$DC TRPP
$DC TRPT
$DC TRPD
$DC TPTC
$DC TRIP
$DC TRTT
$DC TRTD

FRO Mr SDC 2
$TEXT "CORE"

FROMP SDC 4
STEXT "PAPER TAPE"

FROMT SDC 3
STEXT "TELETYPE"

FROMD SDC 3
STEXT "DISPLAY"

FROMTO SDC 2
STEXT " TO "

TRCC JMS TRBK
LAC =FROMTO
JMS L.T
JMS OCTAL5
JMP IDLEO
DAC Ti

TRCC1 LAC* TR8KL
ÜAC* Tl
IS2 TRBKL
ISZ TI
ISZ TRBKC
JMP TRCC1
JMP IDLE

GET CORE BLOCK FROM KEYBOARD
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET ADDRESS FROM KEYBOARD
CANCEL COMMAND
SAVE ADDRESS
GET WORD TO BE MOVED
STORE IN NEW LOCATION
INCREMENT SOURCE POINTER
INCREMENT SINK POINTER
INCREMENT LOC COUNT I SKIP IF DONE
MOVE NEXT WORD
GET NEW COMMAND

TRCP JMS TRBK GET CORE BLOCK FROM KEYBOARD

A-95

TRCPl

LAW 100
DAC T3
LAC TRBKL
JMS TRCP2
LAW 200
DAC T3
LAC« TRBKL
JMS TRCP2
ISZ TRBKL
ISZ TRBKC
JMP TRCPl
JMP IDLE

GET ORIGIN CONTROL BIT
SET CONTROL MASK
GET ORIGIN OF BLOCK
PUNCH ORIGIN
GET DATA CONTROL BIT
SET CONTROL MASK
GET DATA WORD
PUNCH DATA WORD
INCREMENT POINTER
INCREMENT COUNT & SKIP IF DONE
PUNCH NEXT WORD
GET NEW COMMAND

TRCP2 SDC 0
DAC T4
LRS 14
AND «77
XOR T3
JMS PUNCH
LAC T4
LRS 6
AND s77
XOR T3
JMS PUNCH
LAC T4
AND »77
XOR T3
JMS PUNCH
JMP* TRCP2

SAVE WORD TO BE PUNCHED
SHIFT HIGH ORDER *ITS INTO POSITION
TRUNCATE BITS FROM LINK
SET CONTROL BIT
PUNCH IMAGE
GET WORD TO BE PUNCHED
SHIFT MIDDLE BITS INTO POSITION
TRUNCATE HIGH ORDER BITS
SET CONTROL BIT
PUNCH IMAGE
GET WORD TO BE PUNCHED
TRUNCATE HIGH ORDER BITS
SET CONTROL BIT
PUNCH IMAGE
RETURN

TRCT JMS TRBK
LAW 17475
JMS B.T
LAC TRBKL
JMS C.B6
TAD 3 770000
JMS TRKT
LAW 17676
JMS B.T
LAW 17770

GET CORE BLOCK FROM KEYBOARD
GET CARRIAGE RETURN« LINE FEED CODE
TYPE CARRIAGE RETURN» LINE FEED
GET ADDRESS TO BE TYPED
CONVERT TO 6-BIT CODE
REMOVE HIGH ORDER ZERO
TYPE ADDRESS
GET CODE FOR TWO SPACES
TYPE TWO SPACES
LOAD AC WITH -8

A-96

TRCT1
DAC T3
LAW 17677
JMS B.T
LAC* TRBKL
JMS C.B6

TRKT
TRBKL
TRBKC

JMS
ISZ
ISZ
SKP
JMP
ISZ
JMP
JMP

IDLE
T3
TRCTI
TRCTM

SET WORD COUNTER
GET CODE FOR ONE SPACE
TYPE SPACE
GET WORD TO BE TYPED
CONVERT TO 6-BIT CODE
TYPE WORD
INCREMENT LOCATION POINTER
INCREMENT COUNT * SKIP IF DONE
TYPE NEXT WORD
GET NEW COMMAND
SKIP IF END OF LINE
TYPE NEXT WORD
BEGIN NEW LINE

TRCD

TRCDI

JMS
LAC
TAD
SMA
JMP
LAW
DAC
JMS
LAC
JMS
TAD
JMS
LACQ
JMS TRD2

TRBK
TRBKC
»100

♦ ♦3
17700
TRBKC
TRDI
TRBKL
C.B6
«770000
TRD2

TRCD2

LAW
JMS
LAW
DAC
LAW
JMS
LAC*

17676
TRD2
17770
T3
17677
TRD2

TRBKL
JMS C.B6
JMS TRD2
LACQ
JMS TRD2
ISZ TRBKL

GET CORE BLOCK FROM KEYBOARD
GET WORD COUNT
MAKE POSITIVE IF NOT TOO LARGE
SKIP IF TOO LARGE
WORD COUNT OK
LOAD AC WITH -64
ADJUST WORD COUNT
INITIALIZE TEXT LIST FOR DISPLAY
GET ADDRESS TO BE DISPLAYED
CONVERT TO 6-BIT CODE
REMOVE HIGH ORDER ZERO
PUT HIGH ORDER DIGITS IN TEXT LIST
GET LOW ORDER DIGITS
PUT LOW ORDER DIGITS IN TEXT LIST
GET CODE FOR TWO SPACES
PUT IN TEXT LIST
LOAD AC WITH -8
SET WORD COUNTER
GET CODE FOR ONE SPACE
PUT IN TEXT LIST
GET WORD TO BE DISPLAYED
CONVERT TO 6-BIT CODE
PUT HIGH ORDER DIGITS IN TEXT LIST
GET LOW ORDER DIGITS
PUT LOW ORDER DIGITS IN TEXT LIST
INCREMENT LOCATION POINTER

H

A-97

ISZ TRBKC
JMP TRCD3
CLC
DAC T3
JMS TRD3
JMP IDLE

TRCD3 ISZ T3
JMP TRCD2
LAC ■747575
JMS TRD2
JMP TRCD1

TRPC JMS READ
SNA
JMP IDLE
DAC T3
AND «300
SAD »100
JMP TRPC1
SAD «200
JMP TRPC2
JMS READ
SNA
JMP TRPC
JMP *-3

TRPC I JMS TRPC3
DAC T4
JMP TRPC

TRPC2 JMS TRPC3
DAC« • T4
ISZ T4
JMP TRPC

TRPC 3 $DC 0
JMS READ
LRS 6
LAC T3
LLS 6
DAC T3
JMS READ

INCREMENT COUNT < SKIP IF DONE
PREPARE NEXT WORD
GET THREE NULL CHARACTERS
NULLIFY ACCUMULATED CHARACTERS
DISPLAY TEXT LIST
GET NEW COMMAND
SKIP IF END OF LINE
PREPARE NEXT WORD
GET CARRIAGE RETURN« LINE FEED CODE
PUT IN TEXT LIST
BEGIN NEW LINE

READ ONE TAPE IMAGE
SKIP IF NOT END OF RECORD
GET NEW COMMAND
SAVE TAPE LINE
GET CONTROL BITS
SKIP IF NOT ORIGIN
COMPLETE ORIGIN
SKIP IF NOT BINARY DATA
COMPLETE DATA WORD
READ A TAPE IMAGE
SKIP IF NOT END OF RECORD
RESTART DATA TRANSFER
IGNORE TAPE IMAGE
FINISH READING ORIGIN
SET ORIGIN
GET NEXT WORD FROM TAPE
FINISH READING DATA WORD
LOAD DATA WORD
INCREMENT LOCATION COUNTER
GET NEXT WORD FROM TAPE

GET SECOND IMAGE FROM TAPE
SHIFT DATA BITS INTO MO
GET HIGH ORDER 6 BITS
SHIFT HIGH ORDER 12 BITS INTO AC
SAVE HIGH ORDER 12 BITS
GET THIRD IMAGE FROM TAPE

A-98

LRS 6
LAC T3
LLS 6
JMP* TRPC3

TRPP JMS READ
SAD ■ 377
JMP TRPP
DAC T3
AND «300
SAD »300
JMS TRPP3
LAC T3

TRPPI JMS PUNCH
JMS READ
SNA
JMP TRPP2
DAC T3
JMP TRPPI

TRPP2 LAC T3
AND »300
SAD = 300
JMS TRPP3
JMP IDLE

TRPP3 SDC
CLA

0

JMS PUNCH
JMP< > TRPP3

SHIFT DATA BITS INTO MO
GET HIGH ORDER 12 BITS
SHIFT COMPLETED WORD INTO
RETURN

AC

GET IMAGE FROM PAPER TAPE
SKIP IF NOT END-OF-TAPE GARBAGE
RESTART DATA TRANSFER
SAVE TEMPORARILY
GET CONTROL BITS
SKIP IF NOT ALPHANUMERIC
PUNCH END-OF-RECORD MARK
GET IMAGE READ
PUNCH IMAGE
GET IMAGE FROM PAPER TAPE
SKIP IF NOT END OF RECORD
PUNCH END-OF-RECORD IF NECESSARY
SAVE TEMPORARILY
PUNCH IMAGE
GET LAST IMAGE PUNCHED
GET CONTROL BITS
SKIP IF NOT ALPHANUMERIC
PUNCH END-OF-RECORD MARK
GET NEW COMMAND

GET END-OF-RECORD MARK
PUNCH END-OF-RECORD MARK
RETURN

A 99

f TITLE

TRPT JMS READ
SAD • 377
JMP TRPT
DAC T3
AND .300
SAD «300
JMP TRPTI
JMS READ
SNA
JMP TRPT
JMP ♦ -3

TRPT1 LAW 17475
JMS B.T
LAC T3

TRPT2 XOR ■777400
JMS B.T
JMS READ
SNA
JMP IDLE
JMP TRPT2

TRPD JMS
SNA

READ

JMP TRPD
SAD «375
JMP TRPD
SAD «377
JMP TRPD
DAC T6
AND «300
SAD «300
JMP TRPDI
JMS READ
SNA
JMP TRPD
JMP ♦ -3

TRPDI JMS TRDI
LAW 17766

IDLE-TIME TASK (CONTINUED)

GET IMAGE PROM PAPER TAPE
SKIP IF NOT END-OF-TAPE GARBAGE
RESTART DATA TRANSFER
SAVE TEMPORARILY
GET CONTROL BITS
SKIP IF BINARY INFORMATION
RECORD IS ALPHANUMERIC
GET IMAGE FROM PAPER TAPE
SKIP IF NOT END OF RECORD
TRY TRANSFER AGAIN
GET NEXT IMAGE
GET CARRIAGE RETURN, LINE FEED CODE
TYPE CARRIAGE RETURN« LINE FEED
GET FIRST IMAGE FROM TAPE
PRECEDE WITH NULL CHARACTERS
TYPE CHARACTER FROM TAPE
GET IMAGE FROM TAPE
SKIP IF NOT END OF RECORD
GET NEW COMMAND
TYPE CHARACTER

READ IMAGE FROM TAPE
SKIP IF NOT END-OF-RECORD CHARACTER
RESTART DATA TRANSFER
SKIP IF NOT LINE FEED
RESTART DATA TRANSFER
SKIP IF NOT END-OF-TAPE GARBAGE
RESTART DATA TRANSFER
SAVE TEMPORARILY
GET CONTROL BITS
SKIP IF BINARY
RECORD OK
READ IMAGE FROM TAPE
SKIP IF NOT END OF RECORD
TRY TRANSFER AGAIN
IGNORE IMAGE
INITIALIZE TEXT LIST
LOAD AC WITH -10

A-100

OAC T4
LAW 17676
OAC T5
LAC T6
JMP TRP02+3

TRPD2 LAW 17676
OAC T5
JMS READ
SAD «374
JMP TRPD3
SNA
JMP TRP04
JMS TRD4
ISZ T5
JMP TRPD2+2

TRPD3 ISZ
SKP

T4

JHP TRP04
LAW 74
JMS TR04
LAW 75
JMS TR04
JMP TRPD2

TRPD4 JMS TR 03
JMP I OLE

TRTC LAW 17475
JMS B.T
JMS OCTAL5
JMP TRTC 4
OAC T5

TR TCI LAW 17677
JMS B.T
LAC* T5
JMS C.B6
JMS TRKT
LAW 17677
JMS B.T
JMS OCTAL6
JMP TRTC 3

SET LINE COUNTER
LOAO AC WITH -66
SET CHARACTER COUNTER
GET FIRST CHARACTER
AOD TO TEXT LIST
LOAO AC WITH -66
SET CHARACTER COUNTER
REAO IMAGE FROM TAPE
SKIP IF NOT CARRIAGE RETURN
TERMINATE LINE
SKIP IF NOT ENO OF RECORD
TERMINATE TRANSFER
AOD CHARACTER To TEXT LIST
INCREMENT CHAR COUNT t SKIP IF DONE
GET NEXT CHARACTEP
INCREMENT COUNTER « SKIP IF DONi:
GET ANOTHER LINE
TERMINATE TRANSFER
GET CARRIAGE RETURN
ADD TO TEXT LIST
GET LINE FEED
ADO TO TEXT LIST
BEGIN NEW LINE
DISPLAY TEXT LIST
GET NEW COMMAND

GET CARRIAGE RETURN« LINE FEED CODE
TYPE IT
GET ADDRESS FROM KEYBOARD
INTERPRET AS COMMAND
STORE ADDRESS
GET CODE FOR ONE SPACE
TYPE IT
GE" CURRENT CONTENT OF WORD
CONVERT TO 6-BIT CODE
TYPE CURRENT CONTENTS
GET CODE FOR ONE SPACE
TYPE IT
GET NEW CONTENTS FROM KEYBOARD
DETERMINE NATURE OF FAILURE

1

A-101

DAC*
TRTC2 ISZ

LAW
JHS
LAC
JHS
TAD
JHS
JHP

TRTC3 SAD
JHP
JHP

TRTC4 DAC
LAW
JHS
JHP

T5
T5
17475
B.T
T5
C.B6
»770000
TRKT
TRTC1
«74
TRTC2
TRTC
T3
10
T.R
IDLE* 6

STORE NEW CONTENTS
INCREHENT STORED ADDRESS
GET CARRIAGE RETURN« LINE FEED CODE
TYPE CARRIAGE RETURN« LINE FEED
GET CURRENT ADDRESS
CONVERT TO 6-BIT CODE
REHOVE HIGH ORDER ZERO
TYPE CURRENT ADDRESS
TYPE CONTENTS OF CURRENT LOCATION
SKIP IF NOT CARRIAGE RETURN
LEAVE WORD UNCHANGED
BEGIN INTERPRETATION OF NEW BLOCK
SAVE KEYBOARD CHARACTER
GET TELEPRINTER MASK
RELEASE TELEPRINTER
INTERPRET CHARACTER AS COMMAND

TRTP CLA
JHS
LAW
JHS

TRTP1 JHS
SAD
JHP
XOR
JHS
JHP

TRTP2 CLA
JHS
JHP

PUNCH
17475
B.T
ECHO
«77
TRTP2
«300
PUNCH
TRTP1

PUNCH
IDLE

GET END-OF-RECORD MAKK
PUNCH IT
GET CARRIAGE RETURN« LINE FEED CODE
TYPE CARRIAGE RETURN« LINE FEED
ECHO KEYBOARD CHARACTER
SKIP IT NOT NULL CHARACTER
TERHINATE TRANSFER
SET ALPHANUMERIC CONTROL BITS
PUNCH CHARACTER
GET NEXT CHARACTER
GET END-OF-RECORD HARK
PUNCH IT
GET NEW COMMAND

TRTT LAW 17475
JHS B.T
JHS ECHO
SAD «77
JHP IDLE
JHP *-3

GET CARRIAGE RETURN« LINE FEED CODE
TYPE IT
ECHO KEYBOARD CHARACTER
SKIP IF NOT NULL CHARACTER
GET NEW COMMAND
GET NEXT CHARACTER

TRTD LAW 17766
DAC T4

LOAD AC WITH -10
INITIALIZE LINE COUNTER

A-102

JMS
TRTOI LAW

JMS
LAW
DAC

TRTD2 JMS
SAD
JMP
SAD
JMP
JMS
ISZ
JMP

TRTD3 ISZ
SKP
JMP
LAW
JMS
LAW
JMS
LAW
JMS
JMP

TRTD4 JMS
JMP

TRDI
1747 5
6.T
17780
T5
ECHO
■ 77
TRTD4
■ 74
TRTD3
TRD4
T5
TRT02
T4

TRTD4
74
TRD4
75
TR 04
75
TRD4
TRTOI
TR 03
IDLE

INITIALIZE TEXT LIST
GET CARRIAGE RETURN« LINE FEED CODE
TYPE CARRIAGE RETURN« LINE FEED
LOAD AC WITH -64
INITIALIZE CHARACTER COUNTER
ECHO KEYBOARD CHARACTER
SKIP IF NOT NULL CHARACTER
DISPLAY TEXT LIST
SKIP IF NOT CARRIAGE RETURN
TERMINATE LINE
ADD CHARACTER TO TEXT LIST
SKIP IF END OF LINE
GET NEXT CHARACTER
INCREMENT LINE COUNT « SKIP IF DONE
TERMINATE LINE
TERMINATE TRANSFER
GET CARRIAGE RETURN CODE
ADD TO TEXT LIST
GET LINE FEED CODE
ADD TO TEXT LIST
GET LINE FEED CODE
ADD TO TEXT LIST
BEGIN NEW LINE
DISPLAY TEXT LIST
GET NEW COMMAND

ECHO SOC 0
JMS B.K
DAC T6
XOR «777700
JMS B.T
LAC T6
JMP* ECHO

GET CHARACTER FROM KEYBOARD
SAVE TEMPORARILY
PRECEDE WITH NULL CHARACTERS
ECHO CHARACTER ON TELEPRINTER
GET CHARACTER FOR RETURN
RETURN

PUNCH SOC 0
JMS B.P
SKP
JMP* PUNCH
LAC »PUNCH I
JMS L.T

SEND IMAGE TO PUNCH
PUNCH OUT OF TAPE
RETURN
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST

.

A-103

JMP IDLE GET NEW COMMAND

PUNCH1 SDC 7
SDC 747531
fTEXT -UNCH OUT OF TAPE-

READ SDC 0
JMS B.R
SKP
JMP* READ
LAC «READ1
JMS L.T
JMP IDLE

GET IMAGE FROM READER BUFFER
READER OUT OF TAPE
RETURN
GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET NEW COMMAND

REAOl SDC 7
SDC 7 47533
STEXT "EADER OUT OF TAPE*

TRDI

TRD2

SDC 0
LAC 27
LMO
LAC 26
SZA
JMS S.TR
NOP
LAC 27
SZA
JMS L.L
DZM 27
DZM TRDT
LAC ■ TRDT
DAC TRDP
CLC
DAC T3
JMP» TRDI

SDC 0
ISZ TRDT
ISZ TRDP
DAC< • TRDP

GET POINTER TO LEAF
SET UP PARAMETER
GET POINTER TO LEVEL
SKIP IF NO LEVEL
REMOVE LEAF FROM LEVEL
LEAF OR LEVEL DIDN'T EXIST
GET ADDRESS OF LEAF
SKIP IF NO LEAF
DESTROY LEAF
INDICATE NO LEAF
CLEAR TEXT LIST COUNT
GET ADDRESS OF TEXT LIST
INITIALIZE TEXT LIST POINTER
GET 3 NULL CHARACTERS
STORE NULL CHARACTERS
RETURN

INCREMENT
INCREMENT
STORE NEW

TEXT LIST COUNT
TEXT LIST POINTER
TEXT WORD

A-104

JMP» TRD2 RETURN

TRD3 SDC 0
LAC T3
JMS TRD2
LAC 26
SNA
JMP TRD3I
LAC «TRDT
JMS L.D
JMP TRD31
DAC 27
LMO
LAC 26
JMS S.TI
JMP TRD31
JMP* TRD3

TRD3I LAC ■•♦3
JMS L.T
JMP IDLE
SDC 12
SDC 747577
STEXT -NOT ENOUGH

GET REMAINING CHARACTERS
PUT IN TEXT LIST
GET ADDRESS OF LEVEL
SKIP IF LEVEL EXISTS
DISPLAY STORAGE EXCEEDED
GET ADDRESS OF TEXT LIST
CREATE TEXT LEAF
STORAGE EXCEEDED
SAVE ADDRESS OF LEAF
SET UP PARAMETER
GET ADDRESS OF LEVEL
INSERT LEAF
STORAGE EXCEEDED
RETURN
GET ADDRESS OF TEXT LIST
TYPE DIAGNOSTIC
GET NEW COMMAND

DISPLAY STORAGE"

TRD4 SDC 0
LRS 6
LAC T3
LLS 6
DAC T3
AND «770000
SAD »770000
JMP* TRD4
LAC T3
JMS TRD2
CLC
DAC T3
JMP* TRD4

SHIFT CHARACTER INTO MQ
GET PREVIOUS CHARACTERS
SHIFT ALL CHARACTERS INTO AC
SAVE CHARACTERS
GET HIGH ORDER CHARACTER
SKIP IF NOT NULL
RETURN
GET WORD OF 3 CHARACTERS
ADD TO TEXT LIST
GET 3 NULL CHARACTERS
STORE NULL CHARACTERS
RETURN

TRDT SDS 351

A-105

STC SDC 0
LAC «D
DAC DHAL*7
JMS DW
LAW STORE
DAC Tl
IOT 7704
DZM* Tl
ISZ Tl
JMP ♦-2
IOT 7702
JMP* STC

GET ADDRESS OF HIGHEST ACTIVE LEVEL
REMOVE ALL NODES FROM HAL
WAIT FOR DISPLAY TO RECOVER
GET INITIAL COUNTER VALUE
SET POINTER * COUNTER
LEAVE EXTEND MODE
CLEAR STORAGE LOCATION
INCREMENT POINTER t COUNTER
CLEAR NEXT STORAGE LOCATION
ENTER EXTEND MODE
RETURN

OCTAL1 SDC 0
JMS B.K
TAD «-10
SPA
JMP ♦♦3
TAD »10
JMP* OCTAL 1
DAC T3
XOR «70
JMS B.T
LAC T3
LRS 3
LAC 14
LLS 3
DAC T4
ISZ OCTAL 1
JMP* OCTAL 1

GET KEYBOARD CHARACTER
MAKE NEGATIVE IF OCTAL
SKIP IF NOT OCTAL DIGIT
OCTAL DIGIT TYPED
RESTORE CHARACTER
INDICATE FAILURE
SAVE OCTAL INFORMATION
CONVERT TO 6-BIT CODE
TYPE OCTAL DIGIT
GET OCTAL INFORMATION
SHIFT DIGIT INTO MO
GET RECORDED DIGITS
CONCATENATE NEW DIGIT
RECORD NEW WORD
INDICATE SUCCESS
RETURN

OCTAL5 SDC 0
DZM JA
JMS OCTAL1
JMP* OCTAL5
JMS OCTAL1
JMP* OCTAL5
JMS OCTAL1
JMP* 0CTAL5
JMS OCTAL1

CLEAR OCTAL RECORDING WORD
GET OCTAL DIGIT FROM KEYBOARD
NON-OCTAL CHARACTER TYPED
GET OCTAL DIGIT FROM KEYBOARD
NON-OCTAL CHARACTER TYPED
GET OCTAL DIGIT FROM KEYBOARD
NON-OCTAL CHARACTER TYPED
GET OCTAL DIGIT FROM KEYBOARD

A-106

JMP« OCTAL 5
JMS OCTAL 1
JMP« OCTAL5
ISZ OCTAL5
JMP» OCTAL5

OCTAL6 SDC 0
JMS OCTAL 5
JMP« OCTAL 6
JMS OCTAL1
JMP* 0CTAL6
ISZ OCTAL 6
JMP« ' OCTAL6

TRKT $DC 0
OAC Tl
LACC 1
OAC T6
LAC Tl
JMS B.T
LAC T6
JMS B.T
JMP< • TRKT

TRBK $OC 0
LAC «TRBKF
JMS L.T
JMS OCTAL5
JMP IDLEO
OAC TRBKL
LAW 16277
JMS B.T
JMS OCTAL5
JMP IDLEQ
CMA
TAO TRBKL
SMA
JMP IDLEQ
OAC TRBKC
LAW 15177

NON-OCTAL CHARACTER TYPEO
GET OCTAL CHARACTER FROM KEYBOARD
NON-OCTAL CHARACTER TYPEO
INDICATE SUCCESS
RETURN

GET 5 OCTAL DIGITS FROM KEYBOARD
NON-OCTAL CHARACTER TYPED
GET OCTAL DIGIT FROM KEYBOARD
NON-OCTAL CHARACTER TYPED
INDICATE SUCCESS
RETURN

SAVE HIGH ORDER DIGITS
GET LOW ORDER DIGITS
SAVE LOW ORDER DIGITS
GET HIGH ORDER DIGITS
TYPE HIGH ORDER DIGITS
GET LOW ORDER DIGITS
TYPE LOW ORDER DIGITS
RETURN

GET ADDRESS OF TEXT LIST
TYPE TEXT LIST
GET LOW ADDRESS FROM KEYBOARD
CANCEL COMMAND
STORE LOW ADDRESS
GET COMMA CODE
TYPE COMMA
GET HIGH ADDRESS FKOM KEYBOARD
CANCEL COMMAND
FORM ONE'S COMPLEMENT
ADD LOW ADDRESS
SKIP IF PROPERLY ORDERED ADDRESSES
CANCEL COMMAND
STORE LOCATION COUNT
GET RIGHT PARENTHESIS CODE

A-107

JMS B.T TYPE RIGHT PARENTHESIS
JMP* TRBK RETURN

TRBKF $DC 3
SDC 747513
STEXT -LOCKC

A-108

STITLE HIGHEST ACTIVE LEVEL

DHAL

SDC 7 57
SDC 6201
SDC 6301
SDC 1400
SDC DWT
SDC 2010
SDC XP
SDC 1105
SDC 1000
SDC 5000
SDC 2001
SDC D

SEND

1

APPENDIX 8 -- SUMMARY OF SYSTEM SUBROUTINES

THE FOLLOWING TABLE OF SYSTEM SUBROUTINES IS PROVIDED AS A
REFERENCE TO FACILITATE THE WRITING OF USER PROGRAMS. THE
VARIOUS COLUMNS ARE INTERPRETED AS FOLLOWS:

NAME -- SYMBOLIC NAME OF THE SYSTEM SUBROUTINE

ENTRY POINT -- ADDRESS AT WHICH THE SUBROUTINE STARTS

SECTION -- SECTION OF THE REPORT IN WHICH THE
SUBROUTINE IS DESCRIBED

FAILURE RETURN -- WHETHER OR NOT A FAILURE RETURN EXISTS

DELAY POSSIBLE -- WHETHER OR NOT OTHER TASKS MAY BE
EXECUTED BEFORE THE SUBROUTINE RETURNS

NAME ENTRY POINT SECTION FAILURE RETURN DELAY POSSIBLE

B.FI 140 3.4. I YES YES
8.F0 142 3.4. 1 YES YES
B.K 150 3.4. 3 NO YES
B.P 146 3.4. 2 YES YES
B.R 144 3.4. 2 YES YES
B.T 152 3.4. 3 NO YES
C.6A 130 3.3 NO NO
C.A6 132 3.3 NO NO
C.B6 126 3.3 NO NO
CBC 136 3.3 NO NO
CCB 134 3.3 NO NO
D.A 206 3.7 NO NO
D.D 202 3.7 NO NO
D.E 200 3.7 NO NO
D.O 214 3.7 YES NO
D.P 204 3.7 NO NO
D.X 212 3.7 NO NO
D.Y 210 3. 7 NO NO

B-l

B-2

NAME ENTRY POINT SECTION

L.D 2 72 3.1 1
L.L 274 3. 11
L.T 27« 3.1 1
N.A 154 3.5
N.C 156 3.5
N.DI 160 3.5
N.Ü2 162 3.5
N.D3 164 3.5
P.Ü 172 3.6
P.E 170 3.6
P.R 174 3.6
P.S 176 3.6
P.T 166 3.6
O.A 102 3.1
o.c 100 3. 1
Q.F 106 3. 1
0.1 104 3.1
S.LBD 254 3.10
S.LBE 252 3.10
S.LC 256 3.10
S.LH 242 3. 10
S.LL 264 3. 10
S.LN 266 3.10
S.LP 250 3.10
S.LS 262 3. 10
S.LU 260 3.10
S.LX 246 3. 10
S.LY 244 3. 10
S.TD 234 3.9
S.T1 236 3.9
S.TL 232 3.9
S.TR 24« 3.9
T.A 1 16 3.2
T.F 1 14 3.2
T.L 122 3.2
T.P 112 3.2
T.R 120 3.2

FAILURE RETURN DELAY POSSIBLE

YES NO
NO NO
NO YES
NO YES
NO YES
NO NO
NO NO
NO NO
NO NO
NO NO
NO NO
NO NO
NO NO
YES NO
NO NO
YES NO
YES NO
NO NO
NO NO
NO NO
NO NO
NO NO
NO NO
NO NO
NO NO
NO NO
NO YtS
NO YFS
YES MO
YES NO
YES NO
YES YES
NO YES

NO NO

B-3

NAME ENTRY POINT SECTION

T.S 110 3.2
T.U 124 3.2
X.I 216 3.8
X.R 220 3.8
X.S 224 3.8
X.T 222 3.8
X.X 230 3.8
X.Y 226 3.R

FAILURE RETURN

NO

NO
NO
NO
NO
NO
NO

DELAY POSSIBLE

NO

NO
NO
NO
NO
NO
NO

APPENDIX C -- SUMMARY OF IOT INSTRUCTIONS

STATUS WORDS
ALL BITS WHOSF INTERPRtTATIONS ARE NOT SPECIFIED BELOW

ARE NOT USED.

PDP-9 I/O STATUS
BIT INTERPRETATION

0 INTERRUPTS ARE ENABLED
1 READER FLAG
2 PUNCH FLAG
3 KEYBOARD FLAG
A TELEPRINTER FLAG
6 CLOCK FLAG
7 CLOCK ENABLED
8 READER OUT-OF-TAPE FLAG
9 PUNCH OUT-OF-TAPE FLAG

11 201 ÜATAPHONF TRANSMIT FLAG
12 201 DATAPHONE RECEIVE FLAG

201 DATAPHONE STATUS
BIT INTERPRETATION

0 INTERRUPT PENDING
1 DATA LOST
2 PARITY ERROR
3 REQUEST TO SEND
4 TRANSMIT REQUEST
5 CLEAR TO SEND
6 CHECK PARITY
7 TEAT HODE
8 SET READY
9 TERMINAL READY
10 RING
11 CARRIER DETECTED
12 FRAME SIZE REGISTER
13 FRAME SIZE REGISTER
14 FRAME SIZE REGISTER
15 FRAME SIZE REGISTER

BIT 0
BIT 1
BIT 2
BIT 3

C-l

I

C-2

BIT INTERPRETATION

16 TRANSMIT STATE
17 RECEIVE STATE

DISPLAY STATUS WORD I
BIT INTERPRETATION

6 LIGHT PEN FLAG
7 VERTICAL EDGE FLAG
8 HORIZONTAL EDGE FLAG
9 INTERNAL STOP FLAG
10 SECTOR 0 FLAG (DISPLAY COORDINATES ARE ON SCREEN)
11 CONTROL STATE
12 MANUAL INTERRUPT FLAG
13 PUSH BUTTON FLAG
14 DISPLAY INTERRUPT PENDING
15 BREAK FIELD HE6ISTDR BIT 0
16 BREAK FIELD REGISTER BIT 1
17 BREAK FIELD REGISTER BIT 2

DISPLAY STATUS WORD 2
BIT INTERPRETATION

6 0 -- LEFT HAND INCREMENT BEING EXECUTED
1 -- RIGHT HAND INCREMENT BEING EXECUTED

7 LIGHT PEN ENABLED
8 BIT 0 OF Y POSITION REGISTER
9 BIT 0 OF X POSITION REGISTER
10 SCALE BIT 0
11 SCALE BIT 1
12 MODE BIT 0
13 MODE BIT 1
14 MODE BIT 2
15 INTENSITY BIT 0
16 INTENSITY BIT !
17 INTENSITY BIT 2

C-3

DISPLAY INITIAL CONDITIONS
BIT 1NTEHPRETATION

6 ENABLE EDGE FLAG INTERHUHT
7 ENABLE LIGHT PEN FLAG INTERRUPT
8 0 -- DO NOT DISABLE LIGHT PEN AFTER hESUMING DISPLAY

1 -- ENABLE LIGHT PEN ACCORDING TO BIT 9
9 0 -- ENABLE LIGHT PEN AFTER FIRST DATA REQUEST AFTER

RESUMING DISPLAY
1 -- DO NOT ENABLE LIGHT PEN AFTER RESUMING DISPLAY

10 BIT 0 OF Y DIMENSION
11 BIT I OF Y DIMENSION
12 BIT 0 OF X DIMENSION
13 BIT 1 OF X DIMENSION
14 INTENSIFY ALL POINTS
15 INHIBIT EDGE FLAGS
16 ENABLE PUSH BUTTON INTERRUPT
17 ENABLE INTERNAL STOP INTERRUPT

BREAK FIELD LOAD PARAMETER
BIT INTERPRETATION

6 LOAD BREAK FIELD ACCORDING TO BITS 7-V
7 BREAK FIELD BIT 0
8 BREAK FIELD BIT 1
9 BREAK FIELD BIT 2

10 LOAD PUSH BUTTONS ACCORDING TO BITS 11-17
11 0 -- LOAD PUSH BUTTONS 0-5

1 -- LOAD PUSH BUTTONS 6-11
12 PUSH BUTTON 0 OR 6
13 PUSH BUTTON 1 OR 7
14 PUSH BUTTON 2 OR 8
15 PUSH BUTTON 3 OR 9
16 PUSH BUTTON 4 OR 10
17 PUSH BUTTON 5 OR 11

C-4

IOT INSTRUCTIONS
EACH IOT INSTRUCTION IS FORMED BY ADDING THE CODE FROM

THE TABLE BELOW TO 700000. THE AC MAY BE CLEARED AT EVENT TIME
I OF THE IOT INSTRUCTION HY SETTING BIT \A IN THE INSTRUCTION.

CODE FUNCTION

0002

0042

0001

000 4

0044

0101

0102

0104

0144

0201

0202

0206

0244

0301

0302

0304

ENABLE INTERRUPTS

DISABLE INTERRUPTS

SKIP IF CLOCK FLAG IS SET

CLEAR CLOCK FLAG AND DISABLE CLOCK

CLEAR CLOCK FLAG AND ENABLE CLOCK

SKIP IF READER FLAG IS SET

CLEAR READER FLAG* INCLUSIVE OR CONTENT OF READER BUFFER
INTO AC

SELECT READER IN ALPHANUMERIC MODE

SELECT READER IN BINARY MODE

SKIP IF PUNCH FLAG IS SET

CLEAR PUNCH FLAG

PUNCH TAPE IMAGE FROM BITS 10-17 OF AC

PUNCH TAPE IMAGE IN BINARY MODE FROM BITS 12-17 OF AC

SKIP IF KEYBOARD FLAG IS SET

OR CONTENT OF KEYBOARD BUFFER INTO BITS 10-17 OF AC

OR I/O STATUS WORD INTO AC

C-5

COÜE FUNCTION

«401 SKIP IF TELEPRINTER FLAG IS SET

0402 CLEAR TELEPRINTER FLAG

0406 LOAD TELEPRINTER BUFFER FROM BITS 10-17 OF THE AC

0501 OR DISPLAY PUSH-DOWN POINTER INTO BITS 6-17 OF THE AC

0502 OR BITS 1-12 OF THE DISPLAY CONTROL * POSITION REGISTER
INTO BITS 6-17 OF THE AC

0601 OR BITS 3-14 OF THE DISPLAY ADDRESS COUNTER INTO BITS
6-17 OF THE AC

0602 OR DISPLAY STATUS WORD 1 INTO BITS 6-17 OF THE AC

0621 OR PUSH BUTTONS 0-11 INTO BITS 6-17 OF THE AC

0642 SKIP IF THE LIGHT PEN FLAG IS SET

0645 SET DISPLAY PUSH DOWN POINTER FROM BITS 6-17 OF THE AC

0665 SET DISPLAY INITIAL CONDITIONS FROM BITS 6-17 OF THE AC

0701 SKIP IF DISPLAY EXTERNAL STOP FLAG IS SET

0702 SKIP IF EITHER THE VERTICAL OR HORIZONTAL EDGE FLAG IS
SET

0704 STOP DISPLAY (EXTERNAL)

0705 LOAD BREAK FIELD AND/OR PUSH BUTTONS FROM THE BREAK FIELD
PARAMETER IN BITS 6-17 OF THE AC

0721 SKIP IF DISPLAY INTERNAL STOP FLAG IS SET

0722 SKIP IF MANUAL INTERRUPT FLAG IS SET

C-6

CODE FUNCTION

1103 SLT THt A/U CONVLKTfcK MULTIPLEXOR TO THE CHANNEL
SPECIFIED IN BITS 12-17 OF THE AC

1201 INCREMENT THE A/D CONVERTER MULTIPLEXOR CHANNEL NUMBER
(CHANNEL 0 FOLLOWS CHANNEL 77)

1202 OR A/D CONVERTER MULTIPLEXOR CHANNEL NUMBER INTO BITS
12-17 OF THE AC

1301 SKIP IF THE A/D CONVERTER FLAG IS SET

1302 OR A/D CONVERTER BUFFER INTO BITS 0-11 OF THE AC

1304 SELECT THE A/D CONVERTER

1401 SKIP IF THE DATAPHONE TRANSMIT FLAG IS SET

1402 OR THE DATAPHONE STATUS WORD INTO THE AC

1404 INVERT THE DATAPHONE STATUS BITS WHEREVER A 1 APPEARS IN
THE CORRESPONDING POSITION IN THE AC

1421 SKIP IF DATAPHONF MASK SKIP FLAG IS SET

1422 SET THE DATAPHONE MASK SKIP FLAG IF ALL BITS IN THE
DATAPhONE STATUS WORD ARE 1 'S WHEREVER A | APPEARS IN THE
CORRESPONDING POSITION IN THE AC

1424 CLEAR DATAPHONE MASK SKIP FLAG

1441 SKIP IF THE DATAPHONE KECEIVE FLAG IS SET

1442 CLEAR THE DATAPHONE TRANSMIT AND RECEIVE FLAGS

1444 CLEAR ALL DATAPHONE FLAGS AND REGISTERS

1601 CLEAR DISPLAY FLAGS

C-7

CODE FUNCTION

1602

1604

1605

1622

3301

3302

3344

5101

5102

5104

7701

7702

7704

OR BITS 1-12 OF THE DISPLAY Y POSITION REGISTER INTO BITS
6-17 OF THE AC

RESUME DISPLAY AFTER INTERNAL STOP

INITIALIZE DISPLAY AT ADDRESS GIVEN IN BITS 6-17 OF THE
AC

OR DISPLAY STATUS WORD 2 INTO BITS 6-17 OF THE AC

SKIP IF THE TELETYPE IS CONNECTED

CLEAR ALL FLAGS

RESTORE THE LINK AND EXTEND MODE STATUS FROM INFORMATION
CONTAINED IN THE LOCATION WHOSE ADDRESS IS GIVEN IN BITS
5-17 OF THE FOLLOWING WORD IN MEMORY

LOAD D/A CONVERTER CHANNEL *I FROM BITS 0-11 OF THE AC

LOAD D/A CONVERTER CHANNEL #2 FROM BITS 0-11 OF THE AC

LOAD D/A CONVERTER CHANNEL 03 FROM BITS fl-1 I OF THE AC

SKIP IF IN EXTEND MODE

ENTER EXTEND MODE

LEAVE EXTEND MODE

APPENDIX D -- ASSEMBLY LANGUAGE

THE ASSEMBLY LANGUAGE WHICH IS USED IN THE EXAMPLES IN
THE REPORT IS THE SOURCE LANGUAGE FOR THE ASSEMBLER (TO BE
DESCRIBED IN A FORTHCOMING REPORT) WHICH RUNS UNDER THE
EXECUTIVE SYSTEM* THIS LANGUAGE IS DESCRIBED BRIEFLY BELOW.

ALL MNEMONICS ARE FROM ONE TO SIX CHARACTERS LONG. THE
FIRST CHARACTER MUST BE AN ALPHABETIC CHARACTER OR A PERIOD (•)«
AND ALL OTHER CHARACTERS MUST BE ALPHANUMERIC OR PERIODS. A
MNEMONIC MAY REPRESENT ANY ONE OF THE FOLLOWING ENTITIES!

(DA PROGRAM SYMBOL (I. Z.» A SYMBOL WHOSE VALUE IS USED
TO COMPUTE THE OPERAND OF AN INSTRUCTION)*

(2) AN INSTRUCTION CODE« OR

(3) A PSEUDO-OP (I* E.« AN INSTRUCTION TO THE ASSEMBLER).

IF A MNEMONIC IS USED TO REPRESENT MORE THAN ONE OF THESE
ENTITIES* THE ASSEMBLER WILL RESOLVE THE AMBIGUITY FROM CONTEXT.

ALL NUMBERS ARE INTERPRETED AS OCTAL NUMBERS. NUMBERS
MAY REPRESENT VALUES OF PROGRAM SYMBOLS ONLY.

A SOURCE LINE IS COMPOSED OF UP TO FOUR FIELDS. EACH
FIELD IS DELIMITED BY SPACES. (SEVERAL CONSECUTIVE SPACES ARE
INTERPRETED AS A SINGLE SPACE BY THE ASSEMBLER* EXCEPT IN TEXT
PSEUDO-OP OPERANDS.) THE FOUR POSSIBLE FIELDS (FROM LEFT TO
RIGHT ON THE SOURCE LINE) ARE THE FOLLOWING:

(1) LOCATION FIELD

(2) INSTRUCTION FIELD

(3) OPERAND FIELD

(4) COMMENT FIELD

THE LOCATION FIELD CONTAINS A MNEMONIC WHICH IS ASSIGNED

D-l

D-2

THE VALUE OF THE ADDRESS OF THE LOCATION WHICH THE SOURCE LINE
REPRESENTS (UNLESS THE INSTRUCTION FIELD CONTAINS ONE OF THE
PSEUDO-OPS SEOU« JOPD» OR SOPDM). IF THE FIRST CHARACTER ON THE
LINE IS A SPACE« THE LOCATION FIELD IS NOT PRESENT.

THE INSTRUCTION FIELD CONTAINS ONE OF THE FOLLOWINGl

(DA PSEUDO-OP SYMBOL*

(2) A MNEMONIC WHICH REPRESENTS AN INSTRUCTION WHICH
REQUIRES AN OPERAND« OR

(3) AN OPERANDLESS INSTRUCTION MNEMONIC OR A SET OF THESE
MNEMONICS SEPARATED BY PLUS SIGNS (♦), WHICH DENOTE
"INCLUSIVE OR" IN THIS FIELD.

IF THE INSTRUCTION FIELD CONTAINS AN OPERANDLESS INSTRUCTION
THE OPERAND FIELD IS NOT PRESENT. INDIRECT ADDRESSING IS
INDICATED BY AN ASTERISK (♦) APPENDED TO THE RIGHT OF A
MNEMONIC WHICH REPRESENTS AN INSTRUCTION WHICH KEQUüRES AN
OPERAND.

THE OPERAND FIELD CONTAINS A SET OF PROGRAM SYMBOLS
AND/OR NUMBERS SEPARATED BY THE BINARY OPERATOR SYMBOLS ••♦•,

(g'S COMPLEMENT ADDITION) AND/OR M-,, (ß'S COMPLEMENT SUB-
TRACTION). IN ADDITION« THE FIRST PKOGRAM SYMBOL OR NUMBER
WY BE PRECEEDED BY EITHER OF THE UNARY OPERATORS ,,♦,,

(UNARY PLUS) OR ••-" (2^ COMPLEMENT). LITERALS ARE DENOTED
BY AN EQUAL SIGN (■) APPENDED TO THE LEFT END OF THE OPERAND
FIELD. AN ASTERISK <♦) REPRESENTS A MNEMONIC WHOSE VALUE IS THE
ADDRESS OF THE LOCATION WHICH THE SOURCE LINE IN WHICH IT
SPEARS REPRESENTS (IN THE OPERAND FIELD ONLY). THE LO* ORDER
13 BITS OF THE VALUE OF THE EXPRESSION IN THE OPERAND FIELD
ARE ADDED TO THE VALUE REPRESENTED BY THE INSTRUCTION
FIELD.

PSEUDO-OP SYMBOLS ARE WRITTEN IN THE INSTRUCTION
FIELD AND CONSIST OF A DOLLAR SIGN (f) APPENDED TO THE LEFT OF
THE PSEUDO-OP MNEMONIC. THE FOLLOWING SYMBOLS ARE ACCEPTED BY
THE ASSEMBLER!

D-3

SDC A WORD WHICH CONTAINS THE FULL 18-BIT VALUE OF THE
EXPRESSION IN THE OPERAND FIELD IS PRODUCED.

SDS THE 18-BIT VALUE OF THE EXPRESSION IN THE OPERAND FIELD
IS ADDED INTO THE LOCATION COUNTER WITHIN THE ASSEMBLER
(BY TWO'S COMPLEMENT ADDITION)• (ALL MNEMONICS IN THE
OPERAND FIELD MUST BE PREDEFINED.)

SEND THE END OF THE SOURCE PROGRAM IS DECLARED.

SEQU THE PROGRAM SYMBOL MNEMONIC IN THE LOCATION FIELD IS
ASSIGNED THE 18-BIT VALUE OF THE EXPRESSION IN THE
OPERAND FIELD. (ALL MNEMONICS IN THE OPERAND FIELD MUST
BE PREDEFINED.)

SOPD THE OPERANDLESS INSTRUCTION MNEMONIC IN THE LOCATION
FIELD IS ASSIGNED THE 18-BIT VALUE OF THE EXPRESSION IN
THE OPERAND FIELD. (ALL MNEMONICS IN THE OPERAND FIELD
MUST BE PREDEFINED.)

SOPDM THE OPERAND-REQUIRING INSTRUCTION MNEMONIC IN THE
LOCATION FIELD IS ASSIGNED THE 18-BIT VALUE OF THE
EXPRESSION IN THE OPERAND FIELD. (ALL MNEMONICS IN THE
OPERAND FIELD MUST BE PREDEFINED.)

SORG THE LOCATION COUNTER WITHIN THE ASSEMBLER IS SET TO THE
18-BIT VALUE OF THE EXPRESSION IN THE OPERAND FIELD. (ALL
MNEMONICS IN THE OPERAND FIELD MUST BE PREDEFINED.)

STEXT THE FIRST CHARACTER IN THE OPERAND FIELD IS TAKEN AS A
BREAK CHARACTER» AND ALL CHARACTERS TO THE RIGHT OF IT
UP TO THE NEXT BREAK CHARACTER ARE PACKED AS 3 6-BIT
CHARACTER CODES PER WORD. IF THE NUMBER OF CHARACTERS
BETWEEN THE BREAK CHARACTERS IS NOT A MULTIPLE OF 3» THE
LAST WORD GENERATED IS PADDED WITH NULL CHARACTER CODES
(77).

STITLE ALL CHARACTERS TO THE RIGHT OF THIS PSEUDO-OP ARE TAKEN
TO BE THE TITLE OF THE CURRENT SECTION OF THE PROGRAM.
(THIS TITLE IS TYPED ON THE TELETYPE DURING PASS 1 OF THE

D-4

ASSEMBLY« BEGINNING WITH THE FIRST NON-BLANK CHARACTER.)

THE ASSEMBLER IGNORES SOURCE LINES WHICH BEGIN WITH AM
ASTERISK (*>, SOURCE LINES WHICH HAVE NO FIELDS* AND COMMENT
FIELDS.

